论文题名(中文): |
RBM10通过可变剪接调控BRCA1周期性表达与肿瘤形成的机制研究
|
作者: |
聂臣
|
学号: |
B1310305204
|
论文语种: |
chi
|
学科名称: |
医学 - 基础医学(可授医学、理学学位) - 放射医学
|
学生类型: |
博士
|
学校: |
北京大学医学部
|
院系: |
基础医学院
|
专业: |
放射医学
|
第一导师姓名: |
王嘉东
|
论文完成日期: |
2021-06-17
|
论文答辩日期: |
2021-05-24
|
论文题名(外文): |
RBM10-mediated RNA splicing controls BRCA1 cyclical expression and tumorigenesis
|
关键词(中文): |
RNA结合模式蛋白10(RBM10) ; 乳腺癌易感基因1(BRCA1) ; 细胞周期依赖性激酶2(CDK2) ; 可变剪接 ; 无意义介导的mRNA降解途径(NMD)
|
关键词(外文): |
RBM10 ; BRCA1 ; CDK2 ; Alternative splicing ; NMD pathway
|
论文文摘(中文): |
︿
细胞在面对DNA双链断裂损伤时,主要有两种途径修复损伤,分别是同源重组和非同源末端连接,而细胞周期决定了损伤修复通路的选择。在S/G2期,细胞主要通过同源重组途径修复损伤,其中BRCA1 (Breast-cancer susceptibility gene 1)分子起到至关重要的作用;在G0/G1期,主要通过53BP1 (Tumor protein p53 binding protein 1)主导的非同源末端连接途径修复损伤。除此之外,BRCA1还在保护复制叉方面发挥了重要作用。BRCA1主要通过它在DNA损伤修复以及维持复制叉稳定方面发挥的功能,抑制肿瘤的发生发展。BRCA1突变会诱导乳腺癌、卵巢癌等肿瘤的发生,并且对于这类BRCA1突变肿瘤,使用诱导DNA损伤的药物,如PARP(Poly(ADP-ribose) polymerase)抑制剂,能够有效地杀伤肿瘤。因此可以通过研究BRCA1的表达调控机制,找到靶向BRCA1杀伤肿瘤的治疗策略。
BRCA1的蛋白表达水平是随着细胞周期改变的,在S/G2期达到顶峰值,随后进入G0/G1期又会迅速下降。BRCA1在S/G2期表达水平高,有利于BRCA1拮抗非同源末端连接修复途径,使得细胞通过同源重组方式修复DNA损伤。另外在G1期,BRCA1表达需要维持低水平状态,否则过多的BRCA1蛋白会招募过多RAD51定位到DNA损伤位点,反而会导致更多DNA损伤的产生。所以BRCA1表达周期性波动的特性,有利于它维持基因组稳定性,但是BRCA1周期性表达调控的具体机制并不清楚。
本研究发现转录水平或是翻译后水平均不决定BRCA1在S期与G1期的表达差异,反而主要是剪接相关的NMD (Nonsense mediated mRNA decay)过程决定了BRCA1蛋白在S期与G1期的周期性波动。本研究通过RNA-IP (RNA-Immunoprecipitation)偶联质谱方法进行筛选,发现RBM10 (RNA-binding motif protein 10)这一剪接因子决定了BRCA1的周期性表达差异,并且RBM10调控BRCA1蛋白周期性表达的过程受到上游CDK2 (Cyclin-dependent kinase 2)激酶调控。在S期,CDK2磷酸化RBM10的S89位点,增强了RBM10的正常功能,RBM10调控BRCA1的可变剪接,得到更多保留全长、具有正常功能、不被降解的BRCA1亚型mRNA;相反在G1期,RBM10的磷酸化水平低下,使得截短的、功能不全、容易被降解的BRCA1亚型mRNA相对水平增加,最终表现为BRCA1蛋白在S期表达水平高于G1期。
另外本研究通过分析RNA-Seq结果,发现剪接相关的NMD途径调控了包括BRCA1在内众多蛋白的周期性表达差异。RBM10调控的基因绝大多数存在G1期与S期的表达差异。敲低RBM10后,这些基因的周期性表达差异会被削弱,其中有14个BRCAness基因的表达下调。此外CDK2通过调控可变剪接影响基因表达的机制存在普遍性。
综上所述,本研究揭示了CDK2通过调控RBM10磷酸化维持BRCA1周期性表达差异的机制,并且可变剪接相关的NMD途径广泛地调控着下游周期性波动基因的表达差异。在应用方面,本研究发现联用CDK2抑制剂与PARP抑制剂对于杀伤肿瘤具有很好的协同效果,并揭示了RBM10可以作为肿瘤治疗的潜在靶点。
﹀
|
文摘(外文): |
︿
When DNA double-strand breaks (DSBs) happens, there are two different pathways to repair damaged DNA: homologous recombination (HR) and non-homologous end-joining (NHEJ). The choice of DSB repair pathway relies on cell cycle phase. In S/G2 phase, homologous recombination is the major pathway to repair DSB. However, in G0/G1 phase, DNA damage is repaired by NHEJ pathway. Here, BRCA1 (Breast-cancer susceptibility gene 1) is essential for homologous recombination repair. BRCA1 also plays important roles in protecting replication fork. BRCA1 acts as a tumor suppressor gene through its functions in HR repair and replication fork protection. Mutation of BRCA1 increases risk of cancers especially like breast and ovarian cancer. As for these cancers with BRCA1 loss-of-function mutation, drugs that cause DNA damage just like PARP (Poly (ADP-ribose) polymerase) inhibitor, are always available to kill these cancers. Therefore, it's an excellent strategy to find out a treatment method that targets BRCA1 through uncovering the mechanism of BRCA1 expression.
The expression of BRCA1 changes along cell cycle. The level of BRCA1 proteins is higher in S/G2 than G0/G1 phases. BRCA1 could compete with 53BP1 (Tumor protein p53 binding protein 1) favoring HR pathway instead of NHEJ pathway in S/G2 phase because of its higher expression level. On the other hand, it's necessary to keep BRCA1 protein level lower in G1 phase. Too much BRCA1 protein will recruit more RAD51 into the DSB sites in G1 phase, which causes more DNA damage. In conclusion, the cyclical fluctuation of BRCA1 protein is important for its function of maintaining genomic stability. However, the mechanism of BRCA1 cyclical fluctuation expression is not clear until now.
This study finds out that neither transcription or post-translation level decides the difference of BRCA1 expression between G1 and S phase. Instead, alternative splicing mediated NMD (Nonsense mediated mRNA decay) pathway impacts BRCA1 cyclical fluctuation expression. Next, this study screens out that RBM10 (RNA-binding motif protein 10) as a splicing factor decides the difference of BRCA1 expression along cell cycle by RNA-Immunoprecipitation coupled mass spectrum. CDK2 (Cyclin-dependent kinase 2) influences RBM10's splicing function in the upstream to increase BRCA1 expression. in S phase, CDK2 phosphorylates RBM10 at Ser89 site, which enhances the normal function of RBM10, then BRCA1 is alternatively spliced to retain more full-length isoforms with normal function that cannot be degraded by NMD pathway. On the contrary, the hypo-phosphorylated RBM10 changes splicing of BRCA1 in G1 phase, making more truncated isoforms with weaker function that be degraded easily. Therefore, the level of BRCA1 protein is lower in G1 than S phase.
On the other hand, this study uncovers that alternative splicing mediated NMD pathway widely controls genes’ cyclical fluctuation expression according to the results of RNA sequencing. As for the genes regulated by RBM10, there are always difference between their expression in G1 or S phase. Knocking down RBM10 tends to reduce their expression differences. 14 BRCAness genes expression reduce after knockdown of RBM10. Besides, CDK2 influences genes expression by alternative splicing universally.
In conclusion, this study discovered that RBM10 phosphorylated by CDK2 decides the cyclical expression of BRCA1, and alternative splicing mediated NMD pathway generally impacts cyclical genes expression. In the aspect of clinical application, this study discovers that there are synergistic effects towards killing cancer cells by combination of CDK2 inhibitor and PARP inhibitor, and RBM10 is also an efficient target for cancer therapy.
﹀
|
论文目录: |
︿
缩略词表 1 第一章 引言 3 第二章 综述 6 2.1 BRCA1相关研究 6 2.1.1 DNA损伤修复途径 6 2.1.2 BRCA1结构与功能 8 2.1.3 BRCA1的表达调控 10 2.1.4 BRCA1与肿瘤 12 2.2 可变剪接相关研究 14 2.2.1 剪接的过程 14 2.2.2 剪接因子分类及功能 17 2.2.3 可变剪接相关的NMD通路 19 2.2.4 BRCA1的可变剪接 21 2.3 RBM10相关研究 24 2.3.1 RBM10的功能 24 2.3.2 RBM10相关的疾病 27 第三章 材料与方法 30 3.1 实验材料 30 3.1.1 细胞系 30 3.1.2 试剂 30 3.2 实验方法 36 3.2.1 细胞培养与基因敲除细胞株的构建 36 3.2.2 质粒构建、转化与提取 38 3.2.3 质粒转染 43 3.2.4 RNA干扰实验(RNAi) 44 3.2.5 慢病毒感染 44 3.2.6 蛋白印迹实验(Western blot) 45 3.2.7 RNA提取与逆转录PCR 46 3.2.8 实时荧光定量PCR(qPCR) 48 3.2.9 细胞免疫荧光 51 3.2.10 细胞周期同步化与细胞周期检测 51 3.2.11 蛋白免疫共沉淀(Co-IP) 52 3.2.12 染色质免疫共沉淀(ChIP) 53 3.2.12 RNA pull-down偶联质谱 54 3.2.13 RNA免疫共沉淀(RNA-IP) 56 3.2.14 可变剪接微基因报告系统与cDNA PCR法 57 3.2.16 蛋白磷酸化质谱 60 3.2.17 单克隆形成实验 60 3.2.18 免疫组化 61 3.2.19 HR效率实验 62 3.2.20 DNA fiber实验 62 3.2.21 裸鼠移植瘤实验 63 3.2.22 RNA-Seq及数据分析 63 第四章 结果 64 4.1 RNA剪接相关的NMD途径决定BRCA1周期波动 64 4.2 RBM10作为S期BRCA1的剪接因子 68 4.3 RBM10决定BRCA1的周期表达差异 70 4.4 RBM10通过可变剪接促进BRCA1表达 74 4.5 CDK2通过调节RBM10磷酸化影响BRCA1周期波动表达 77 4.6 RBM10通过调控BRCA1周期性表达以维持基因组稳定性 88 4.7 RBM10影响肿瘤形成并作为肿瘤治疗靶点 92 第五章 讨论 97 第六章 结论 103 参考文献 105 学位论文答辩委员会名单 112 个人简历、在学期间发表的学术论文与研究成果 113 致谢 114 北京大学学位论文原创性声明和使用授权说明 116
﹀
|
参考文献: |
︿
[1] Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet. 1994; 343(8899):692-695. [2] Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, Jervis S, van Leeuwen FE, Milne RL, Andrieu N, Goldgar DE, Terry MB, Rookus MA, Easton DF, Antoniou AC; BRCA1 and BRCA2 Cohort Consortium, McGuffog L, Evans DG, Barrowdale D, Frost D, Adlard J, Ong KR, Izatt L, Tischkowitz M, Eeles R, Davidson R, Hodgson S, Ellis S, Nogues C, Lasset C, Stoppa-Lyonnet D, Fricker JP, Faivre L, Berthet P, Hooning MJ, van der Kolk LE, Kets CM, Adank MA, John EM, Chung WK, Andrulis IL, Southey M, Daly MB, Buys SS, Osorio A, Engel C, Kast K, Schmutzler RK, Caldes T, Jakubowska A, Simard J, Friedlander ML, McLachlan SA, Machackova E, Foretova L, Tan YY, Singer CF, Olah E, Gerdes AM, Arver B, Olsson H. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA. 2017; 317(23):2402-2416. [3] Stadler ZK, Salo-Mullen E, Patil SM, Pietanza MC, Vijai J, Saloustros E, Hansen NA, Kauff ND, Kurtz RC, Kelsen DP, Offit K, Robson ME. Prevalence of BRCA1 and BRCA2 mutations in Ashkenazi Jewish families with breast and pancreatic cancer. Cancer. 2012 ;118(2):493-9. [4] Nyberg T, Frost D, Barrowdale D, Evans DG, Bancroft E, Adlard J, Ahmed M, Barwell J, Brady AF, Brewer C, Cook J, Davidson R, Donaldson A, Eason J, Gregory H, Henderson A, Izatt L, Kennedy MJ, Miller C, Morrison PJ, Murray A, Ong KR, Porteous M, Pottinger C, Rogers MT, Side L, Snape K, Walker L, Tischkowitz M, Eeles R, Easton DF, Antoniou AC. Prostate Cancer Risks for Male BRCA1 and BRCA2 Mutation Carriers: A Prospective Cohort Study. Eur Urol. 2020; 77(1):24-35. [5] Noordermeer SM, van Attikum H. PARP Inhibitor Resistance: A Tug-of-War in BRCA-Mutated Cells. Trends Cell Biol. 2019; 29(10):820-834. [6] Tsibulak I, Wieser V, Degasper C, Shivalingaiah G, Wenzel S, Sprung S, Lax SF, Marth C, Fiegl H, Zeimet AG. BRCA1 and BRCA2 mRNA-expression prove to be of clinical impact in ovarian cancer. Br J Cancer. 2018; 119(6):683-692. [7] Zhong Q, Chen CF, Li S, Chen Y, Wang CC, Xiao J, Chen PL, Sharp ZD, Lee WH. Association of BRCA1 with the hRad50-hMre11-p95 complex and the DNA damage response. Science. 1999; 285(5428):747-50. [8] Chen L, Nievera CJ, Lee AY, Wu X. Cell cycle-dependent complex formation of BRCA1.CtIP.MRN is important for DNA double-strand break repair. J Biol Chem. 2008; 283(12):7713-20. [9] Zhao W, Wiese C, Kwon Y, Hromas R, Sung P. The BRCA Tumor Suppressor Network in Chromosome Damage Repair by Homologous Recombination. Annu Rev Biochem. 2019; 88:221-245. [10] San Filippo J, Sung P, Klein H. Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008; 77:229-57. [11] Panier S1, Boulton SJ. Double-strand break repair: 53BP1 comes into focus. Nat Rev Mol Cell Biol. 2014; 15(1):7-18. [12] Cortez D. Replication-Coupled DNA Repair. Mol Cell. 2019; 74(5):866-876. [13] Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. 2011; 145(4):529-42. [14] Daza-Martin M, Starowicz K, Jamshad M, Tye S, Ronson GE, MacKay HL, Chauhan AS, Walker AK, Stone HR, Beesley JFJ, Coles JL, Garvin AJ, Stewart GS, McCorvie TJ, Zhang X, Densham RM, Morris JR. Isomerization of BRCA1-BARD1 promotes replication fork protection. Nature. 2019; 571(7766):521-527. [15] Dimitrov SD, Lu D, Naetar N, Hu Y, Pathania S, Kanellopoulou C, Livingston DM. Physiological modulation of endogenous BRCA1 p220 abundance suppresses DNA damage during the cell cycle. Genes Dev. 2013; 27(20):2274-91. [16] Wang A, Schneider-Broussard R, Kumar AP, MacLeod MC, Johnson DG. Regulation of BRCA1 expression by the Rb-E2F pathway. J Biol Chem. 2000; 275(6):4532-6. [17] Wu W, Sato K, Koike A, Nishikawa H, Koizumi H, Venkitaraman AR, Ohta T. HERC2 is an E3 ligase that targets BRCA1 for degradation. Cancer Res. 2010; 70(15):6384-92. [18] Hojny J, Zemankova P, Lhota F, Sevcik J, Stranecky V, Hartmannova H, Hodanova K, Mestak O, Pavlista D, Janatova M, Soukupova J, Vocka M, Kleibl Z, Kleiblova P. Multiplex PCR and NGS-based identification of mRNA splicing variants: Analysis of BRCA1 splicing pattern as a model. Gene. 2017; 637:41-49. [19] Okumura N, Yoshida H, Kitagishi Y, Nishimura Y, Matsuda S. Alternative splicings on p53, BRCA1 and PTEN genes involved in breast cancer. Biochem Biophys Res Commun. 2011; 413(3):395-9. [20] Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol. 2015;16(11):665-77. [21] Sankar TS, Wastuwidyaningtyas BD, Dong Y, Lewis SA, Wang JD. The nature of mutations induced by replication–transcription collisions. Nature. 2016; 535(7610):178-81. [22] Crossley MP, Bocek M, Cimprich KA. R-Loops as Cellular Regulators and Genomic Threats. Mol Cell. 2019;73(3):398–411. [23] Neelsen KJ, Lopes M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol. 2015;16(4):207-20. [24] Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat Rev Mol Cell Biol. 2014;15(7):465-81. [25] Iyer RR, Pluciennik A, Burdett V, Modrich PL. DNA mismatch repair: functions and mechanisms. Chem Rev. 2006;106(2):302-23. [26] Deans AJ, West SC. DNA interstrand crosslink repair and cancer. Nat Rev Cancer. 2011;11(7):467-80. [27] Huen MS, Sy SM, Chen J. BRCA1 and its toolbox for the maintenance of genome integrity. Nat Rev Mol Cell Biol. 2010;11(2):138-48. [28] Xia Y, Pao GM, Chen HW, Verma IM, Hunter T. Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein. J. Biol. Chem. 2003; 278:5255–5263. [29] Nishikawa H, et al. BRCA1-associated protein 1 interferes with BRCA1/BARD1 RING heterodimer activity. Cancer Res. 2009; 69:111–119. [30] Deng CX. BRCA1: cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution. Nucleic Acids Res. 2006;34(5):1416–1426. [31] Xu B, Kim S, Kastan MB. Involvement of BRCA1 in S-phase and G2-phase checkpoints after ionizing irradiation. Mol. Cell. Biol. 2001; 21:3445–3450. [32] Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2011;12(1):68–78. [33] Hatchi E, Skourti-Stathaki K, Ventz S, Pinello L, Yen A, Kamieniarz-Gdula K, Dimitrov S, Pathania S, McKinney KM, Eaton ML, Kellis M, Hill SJ, Parmigiani G, Proudfoot NJ, Livingston DM. BRCA1 recruitment to transcriptional pause sites is required for R-loop-driven DNA damage repair. Mol Cell. 2015;57(4):636-647. [34] Ruffner H, Verma IM. BRCA1 is a cell cycle-regulated nuclear phosphoprotein. Proc Natl Acad Sci U S A. 1997;94(14):7138-43. [35] Chen Y, Farmer AA, Chen CF, Jones DC, Chen PL, Lee WH. BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Res. 1996;56(14):3168-72. [36] Gudas JM, Li T, Nguyen H, Jensen D, Rauscher FJ 3rd, Cowan KH. Cell cycle regulation of BRCA1 messenger RNA in human breast epithelial cells. Cell Growth Differ. 1996;7(6):717-23. [37] Vaughn JP, Davis PL, Jarboe MD, Huper G, Evans AC, Wiseman RW, Berchuck A, Iglehart JD, Futreal PA, Marks JR. BRCA1 expression is induced before DNA synthesis in both normal and tumor-derived breast cells. Cell Growth Differ. 1996;7(6):711-5. [38] De Siervi A, De Luca P, Byun JS, Di LJ, Fufa T, Haggerty CM, Vazquez E, Moiola C, Longo DL, Gardner K. Transcriptional autoregulation by BRCA1. Cancer Res. 2010;70(2):532-42. [39] Yang WW, Wang ZH, Zhu Y, Yang HT. E2F6 negatively regulates ultraviolet-induced apoptosis via modulation of BRCA1. Cell Death Differ. 2007;14(4):807-17. [40] Arizti P, Fang L, Park I, Yin Y, Solomon E, Ouchi T, Aaronson SA, Lee SW. Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol. 2000;20(20):7450-9. [41] Gupta R, Liu AY, Glazer PM, Wajapeyee N. LKB1 preserves genome integrity by stimulating BRCA1 expression. Nucleic Acids Res. 2015;43(1):259–271. [42] Dubbury SJ, Boutz PL, Sharp PA. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature. 2018;564(7734):141–145. [43] Krejci L, Altmannova V, Spirek M, Zhao X. Homologous recombination and its regulation. Nucleic Acids Research. 2012;40(13):5795-5818. [44] Hirshfield, K.M.; Ganesan, S. Triple-negative breast cancer: molecular subtypes and targeted therapy. Curr. Opin. Obstet. Gynecol. 2014;26(1), 34-40. [45] Rigakos, G.; Razis, E. BRCAness: Finding the Achilles heel in ovarian cancer. Oncologist, 2012;17(7), 956-962. [46] Romagnolo AP, Romagnolo DF, Selmin OI. BRCA1 as target for breast cancer prevention and therapy. Anticancer Agents Med Chem. 2015;15(1):4-14. [47] Semmler L, Reiter-Brennan C, Klein A. BRCA1 and Breast Cancer: a Review of the Underlying Mechanisms Resulting in the Tissue-Specific Tumorigenesis in Mutation Carriers. J Breast Cancer. 2019;22(1):1-14. [48] Li W, Xiao C, Vonderhaar BK, Deng CX. A role of estrogen/ERalpha signaling in BRCA1-associated tissue-specific tumor formation. Oncogene. 2007;26(51):7204-12. [49] Sedic M, Skibinski A, Brown N, Gallardo M, Mulligan P, Martinez P, Keller PJ, Glover E, Richardson AL, Cowan J, Toland AE, Ravichandran K, Riethman H, Naber SP, N??r AM, Blasco MA, Hinds PW, Kuperwasser C. Haploinsufficiency for BRCA1 leads to cell-type-specific genomic instability and premature senescence. Nat Commun. 2015; 6:7505. [50] Wang RH, Zheng Y, Kim HS, Xu X, Cao L, Luhasen T, Lee MH, Xiao C, Vassilopoulos A, Chen W, Gardner K, Man YG, Hung MC, Finkel T, Deng CX. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell. 2008;32(1):11-20. [51] Palacios JA, Herranz D, De Bonis ML, Velasco S, Serrano M, Blasco MA. SIRT1 contributes to telomere maintenance and augments global homologous recombination. J Cell Biol. 2010; 191:1299-1313. [52] Savage KI, Matchett KB, Barros EM, Cooper KM, Irwin GW, Gorski JJ, Orr KS, Vohhodina J, Kavanagh JN, Madden AF, Powell A, Manti L, McDade SS, Park BH, Prise KM, McIntosh SA, Salto-Tellez M, Richard DJ, Elliott CT, Harkin DP. BRCA1 deficiency exacerbates estrogen-induced DNA damage and genomic instability. Cancer Res. 2014;74(10):2773-2784. [53] Yigong Shi. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nature Reviews Molecular Cell Biology. Nat Rev Mol Cell Biol. 2017 Nov;18(11):655-670. [54] Dvinge H, Kim E, Abdel-Wahab O, Bradley RK. RNA splicing factors as oncoproteins and tumour suppressors. Nat Rev Cancer. 2016;16(7):413-30. [55] Lin S, Fu XD. SR proteins and related factors in alternative splicing. Adv Exp Med Biol. 2007; 623:107-22. [56] Martinez-Contreras R, Cloutier P, Shkreta L, Fisette JF, Revil T, Chabot B. hnRNP proteins and splicing control. Adv Exp Med Biol. 2007; 623:123-47. [57] Kornblihtt AR, Schor IE, Alló M, Dujardin G, Petrillo E, Mu?oz MJ. Alternative splicing: a pivotal step between eukaryotic transcription and translation. Nat Rev Mol Cell Biol. 2013;14(3):153-65. [58] Chen M, Manley JL. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nature reviews Molecular cell biology. 2009;10(11):741-754. [59] Shi Y, Manley JL. A complex signaling pathway regulates SRp38 phosphorylation and pre-mRNA splicing in response to heat shock. Mol Cell. 2007; 28:79–90. [60] Cosson B, Couturier A, Chabelskaya S, Kiktev D, Inge-Vechtomov S, Philippe M, Zhouravleva G. Poly(A)-binding protein acts in translation termination via eukaryotic release factor 3 interaction and does not influence [PSI (+)] propagation. Mol Cell Biol. 2002;22(10):3301-15. [61] Singh G, Rebbapragada I, Lykke-Andersen J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 2008;6(4): e111. [62] Gehring NH, Kunz JB, Neu-Yilik G, Breit S, Viegas MH, Hentze MW, Kulozik AE. Exon-junction complex components specify distinct routes of nonsense-mediated mRNA decay with differential cofactor requirements. Mol Cell. 2005;20(1):65-75. [63] Saltzman AL, Kim YK, Pan Q, Fagnani MM, Maquat LE, Blencowe BJ. Regulation of multiple core spliceosomal proteins by alternative splicing-coupled nonsense-mediated mRNA decay. Mol Cell Biol. 2008 Jul;28(13):4320-30. [64] Ni JZ, Grate L, Donohue JP, Preston C, Nobida N, O'Brien G, Shiue L, Clark TA, Blume JE, Ares M Jr. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay. Genes Dev. 2007 Mar 15;21(6):708-18. [65] Orban TI, Olah E. Emerging roles of BRCA1 alternative splicing. Mol Pathol. 2003;56(4):191–197. [66] Smith LD, Leme de Calais F, Raponi M, Mellone M, Buratti E, Blaydes JP, Baralle D. Novel splice-switching oligonucleotide promotes BRCA1 aberrant splicing and susceptibility to PARP inhibitor action. Int J Cancer. 2017;140(7):1564-1570. [67] Wang Y, Bernhardy AJ, Cruz C, Krais JJ, Nacson J, Nicolas E, Peri S, van der Gulden H, van der Heijden I, O'Brien SW, Zhang Y, Harrell MI, Johnson SF, Candido Dos Reis FJ, Pharoah PD, Karlan B, Gourley C, Lambrechts D, Chenevix-Trench G, Olsson H, Benitez JJ, Greene MH, Gore M, Nussbaum R, Sadetzki S, Gayther SA, Kjaer SK; kConFab Investigators, D'Andrea AD, Shapiro GI, Wiest DL, Connolly DC, Daly MB, Swisher EM, Bouwman P, Jonkers J, Balma?a J, Serra V, Johnson N. The BRCA1-Δ11q Alternative Splice Isoform Bypasses Germline Mutations and Promotes Therapeutic Resistance to PARP Inhibition and Cisplatin. Cancer Res. 2016;76(9):2778-90. [68] Raponi M, Smith LD, Silipo M, Stuani C, Buratti E, Baralle D. BRCA1 exon 11 a model of long exon splicing regulation. RNA Biol. 2014;11(4):351-9. [69] Loiselle JJ, Sutherland LC. RBM10: Harmful or helpful-many factors to consider. J Cell Biochem. 2018;119(5):3809-3818. [70] Sun Y, Bao Y, Han W, Song F, Shen X, Zhao J, Zuo J, Saffen D, Chen W, Wang Z, You X, Wang Y. Autoregulation of RBM10 and cross-regulation of RBM10/RBM5 via alternative splicing-coupled nonsense-mediated decay. Nucleic Acids Res. 2017;45(14):8524-8540. [71] Inoue A, Yamamoto N, Kimura M, Nishio K, Yamane H, Nakajima K. RBM10 regulates alternative splicing. FEBS Lett. 2014; 588:942–947. [72] Zheng S, Damoiseaux R, Chen L, Black DL. A broadly applicable high‐throughput screening strategy identifies new regulators of Dlg4 (Psd-95) alternative splicing. Genome Res. 2013; 23:998-1007. [73] Sutherland LC, Thibault P, Durand M, Lapointe E, Knee JM, Beauvais A, Kalatskaya I, Hunt SC, Loiselle JJ, Roy JG, Tessier SJ, Ybazeta G, Stein L, Kothary R, Klinck R, Chabot B. Splicing arrays reveal novel RBM10 targets, including SMN2 pre-mRNA. BMC Mol Biol. 2017;18(1):19. [74] Bechara EG, Sebestyén E, Bernardis I, Eyras E, Valcárcel J. RBM5, 6, and 10 differentially regulate alternative splicing to control cancer cell proliferation. Mol Cell. 2013;52(5):720-33. [75] Wang Y, Gogol-D?ring A, Hu H, Fr?hler S, Ma Y, Jens M, Maaskola J, Murakawa Y, Quedenau C, Landthaler M, Kalscheuer V, Wieczorek D, Wang Y, Hu Y, Chen W. Integrative analysis revealed the molecular mechanism underlying RBM10-mediated splicing regulation. EMBO Mol Med. 2013;5(9):1431-42. [76] Mueller CF, Berger A, Zimmer S, Tiyerili V, Nickenig G. The heterogenous nuclear riboprotein S1-1 regulates AT1 receptor gene expression via transcriptional and posttranscriptional mechanisms. Arch Biochem Biophys. 2009;488(1):76-82. [77] Yamada H, Tsutsumi K, Nakazawa Y, Shibagaki Y, Hattori S, Ohta Y. Src Family Tyrosine Kinase Signaling Regulates FilGAP through Association with RBM10. Garcia-Mata R, ed. PLoS ONE. 2016;11(1): e0146593. [78] Wang K, Bacon ML, Tessier JJ, Rintala-Maki ND, Tang V, Sutherland LC. RBM10 Modulates Apoptosis and Influences TNF-α Gene Expression. Journal of Cell Death. 2012; 5:1–19. [79] Martinez-Arribas F, Agudo D, Pollan M, et al. Positive correlation between the expression of X-chromosome RBM genes (RBMX, RBM3, RBM10) and the proapoptotic Bax gene in human breastcancer. J Cell Biochem. 2006; 97:1275–1282. [80] Gripp KW, Hopkins E, Johnston JJ, Krause C, Dobyns WB, Biesecker LG. Long-term survival in TARP syndrome and confirmation of RBM10 as the disease-causing gene. Am J Med Genet A. 2011;155A(10):2516-20. [81] Zhao J, Sun Y, Huang Y, Song F, Huang Z, Bao Y, Zuo J, Saffen D, Shao Z, Liu W, Wang Y. Functional analysis reveals that RBM10 mutations contribute to lung adenocarcinoma pathogenesis by deregulating splicing. Sci Rep. 2017; 7:40488. [82] Mohan N, Kumar V, Kandala DT, Kartha CC, Laishram RS. A Splicing-Independent Function of RBM10 Controls Specific 3' UTR Processing to Regulate Cardiac Hypertrophy. Cell Rep. 2018;24(13):3539-3553. [83] Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science. 2007;316(5828):1160-6. [84] Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK-cyclin family. Open Biol. 2018 Sep;8(9):180112. [85] Bertoli C, Skotheim JM, de Bruin RA. Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 2013;14(8):518-28. [86] Takahashi Y, Rayman JB, Dynlacht BD. Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 2000;14(7):804-16. [87] Houseley J, Tollervey D. The many pathways of RNA degradation. Cell. 2009;136(4):763-76. [88] West S, Proudfoot NJ, Dye MJ. Molecular dissection of mammalian RNA polymerase II transcriptional termination. Mol Cell. 2008;29(5):600-10. [89] Rougemaille M, Villa T, Gudipati RK, Libri D. mRNA journey to the cytoplasm: attire required. Biol Cell. 2008;100(6):327-42. [90] Roy B, Jacobson A. The intimate relationships of mRNA decay and translation. Trends Genet. 2013;29(12):691-9. [91] Nacson J, Di Marcantonio D, Wang Y, Bernhardy AJ, Clausen E, Hua X, Cai KQ, Martinez E, Feng W, Callén E, Wu W, Gupta GP, Testa JR, Nussenzweig A, Sykes SM, Johnson N. BRCA1 Mutational Complementation Induces Synthetic Viability. Mol Cell. 2020;78(5):951-959.e6. [92] Dominguez D, Tsai YH, Weatheritt R, Wang Y, Blencowe BJ, Wang Z. An extensive program of periodic alternative splicing linked to cell cycle progression. Elife. 2016;5: e10288. [93] Gr?ub R, Lancero H, Pedersen A, Chu M, Padmanabhan K, Xu XQ, Spitz P, Chalkley R, Burlingame AL, Stokoe D, Bernstein HS. Cell cycle-dependent phosphorylation of human CDC5 regulates RNA processing. Cell Cycle. 2008;7(12):1795-803. [94] Tarapore P, Shinmura K, Suzuki H, Tokuyama Y, Kim SH, Mayeda A, Fukasawa K. Thr199 phosphorylation targets nucleophosmin to nuclear speckles and represses pre-mRNA processing. FEBS Lett. 2006;580(2):399-409. [95] Chen X, Guo D, Zhu Y, Xian F, Liu S, Wu L, Lou X. Nuclear phosphoproteomics analysis reveals that CDK1/2 are involved in EGF-regulated constitutive pre-mRNA splicing in MDA-MB-468 cells. J Proteomics. 2016; 141:77-84. [96] Chi Y, Carter JH, Swanger J, Mazin AV, Moritz RL, Clurman BE. A novel landscape of nuclear human CDK2 substrates revealed by in situ phosphorylation. Sci Adv. 2020;6(16): eaaz9899. [97] Deans AJ, Khanna KK, McNees CJ, Mercurio C, Heierhorst J, McArthur GA. Cyclin-dependent kinase 2 functions in normal DNA repair and is a therapeutic target in BRCA1-deficient cancers. Cancer Res. 2006;66(16):8219-26. [98] D'Andrea AD. Mechanisms of PARP inhibitor sensitivity and resistance. DNA Repair (Amst). 2018; 71:172-176. [99] Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science. 2017;355(6330):1152-1158. [100] Johnson N, Li YC, Walton ZE, Cheng KA, Li D, Rodig SJ, Moreau LA, Unitt C, Bronson RT, Thomas HD, Newell DR, D'Andrea AD, Curtin NJ, Wong KK, Shapiro GI. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat Med. 2011;17(7):875-82. [101] Yi J, Liu C, Tao Z, Wang M, Jia Y, Sang X, Shen L, Xue Y, Jiang K, Luo F, Liu P, Cheng H. MYC status as a determinant of synergistic response to Olaparib and Palbociclib in ovarian cancer. EBioMedicine. 2019; 43:225-237. [102] Quereda V, Bayle S, Vena F, Frydman SM, Monastyrskyi A, Roush WR, Duckett DR. Therapeutic Targeting of CDK12/CDK13 in Triple-Negative Breast Cancer. Cancer Cell. 2019;36(5):545-558.e7.
﹀
|
分类号: |
R730.55
|
馆藏位置: |
医临时馆
|
开放日期: |
2024-09-06
|