题名: |
东亚钳蝎蝎毒多肽的制备、结构表征及活性研究
|
作者: |
陈怡晓
|
学号: |
S2011210070
|
语种: |
chi
|
学科: |
理学 - 药学(可授医学、理学学位) - 生药学
|
学位: |
硕士
|
学校: |
北京大学医学部
|
院系: |
药学院
|
专业: |
生药学
|
导师姓名: |
付宏征
|
完成日期: |
2023-07-09
|
答辩日期: |
2023-05-20
|
题名(外文): |
Preparation, structure characterization and activity study of the venom polypeptide of the Buthus Martensii Karsch
|
关键词(中文): |
Buthus Martensii Karsch ; 毒素多肽 ; BMK-M10 ; 重组表达 ; 核磁共振解析多肽结构
|
关键词(外文): |
Buthus Martensii Karsch ; toxin polypeptide ; BMK-M10 ; recombinant expression ; nuclear magnetic resonance analysis of polypeptide structure
|
文摘: |
︿
蝎子是地球上系统发育最古老的动物之一,已经存活了 4 亿多年。其毒液被用作防御机制或固定和消化猎物,是酶和非酶成分的复杂混合物,具有特定的病理生理功能,可以作为药物发现中新的主要成分的宝贵来源。
东亚钳蝎(Buthus Martensii Karsch)是亚洲地区分布最多的蝎亚科,全蝎作为传统中药已有两千多年的用药历史。其主要药效成分蝎毒作为复杂的多肽混合物在结构方面研究相对薄弱,活性机制尚不明确。为了获取蝎肽单体的空间结构,本研究采用HPLC技术,对蝎毒的活性成分进行分离,并结合大肠杆菌重组表达技术和核磁共振方法,解析多肽的三维空间结构,为蝎毒多肽的活性机制研究提供物质和结构基础。
主要研究内容和结果如下:
1、采用离子交换色谱、反相高效液相色谱技术,建立了东亚钳蝎蝎毒活性单体的分离纯化方法。其中对蝎毒多肽BmK-M10通过基质辅助激光解析电离-飞行时间质谱仪(MALDI-TOF/TOF)结合搜库获得多肽序列,为后续研究提供了物质基础。
2、根据东亚钳蝎cDNA库的BMK-M10信息,使用PCR扩增技术设计目的基因,进行Nco1和Hind III双酶切后插入表达载体pET-32a(+)中,经单克隆鉴定和测序工作筛选正确转化的大肠杆菌培养。本法得到的重组蛋白部分可溶,部分形成在沉淀里,推测聚集形成错误折叠的包涵体,1 L菌液培养物共获得约10mg重组BMK-M10。本研究确定了大肠杆菌系统可以作为BMK-M10的获取途径,为核磁共振波谱法研究BMK-M10结构提供了条件。
3、通过M9培养基获得进行15N标记的重组蛋白,采用核磁共振方法解析多肽的空间结构,为证明BMK-M10蛋白的结构与活性机制关系提供了科学依据。
4、通过SPR技术,明确了蝎肽BMK-M10可与人源重组凝血因子X有所结合,影响抗凝通路。
﹀
|
文摘(外文): |
︿
Scorpions are one of the oldest phylogenetic animals on Earth, having survived for more than 400 million years. Their venom is a complex mixture of components with specific pathophysiological functions and can serve as a valuable source of new major ingredients in drug discovery.
Buthus Martensii Karsch is the most widely distributed scorpion subfamily in Asia. Scorpion has been used as traditional Chinese medicine for more than two thousand years. In order to obtain the spatial structure of the scorpion peptide monomer, in this study we used HPLC technology to separate the active components of scorpion venom, and used prokaryotic expression technology to produce peptide with high yield to provide material basis for the subsequent research.
The main research content and results are as follows:
By using ion exchange chromatography and reversed-phase HPLC as separation and purification method, the peptide sequence of the scorpion venom peptide BmK-M10 was obtained by MALDI-TOF/TOF and database searching.
2. According to the information of BMK-M10 from cDNA library, the target gene was designed by PCR amplification technology, and inserted into the expression vector pET-32a(+) , the strain BL21(DE3) was used to produce the peptide. A total of about 10 mg of recombinant BMK-M10 was obtained in 1 L of bacterial culture. This study confirmed that the Escherichia coli system can be used as a way to obtain rBMK-M10, which makes the study of 3D structure of 15N-rBMK-M10 by NMR possible.
3. The 15N-labeled recombinant protein was obtained through the M9 medium, and the spatial structure of the peptide can be analyzed by NMR, which provided a scientific basis for proving the relationship between the structure and the activity mechanism of the BMK-M10 protein.
4. Through SPR technology, it is clear that the scorpion peptide BMK-M10 can be combined with human recombinant coagulation factor X to affect anticoagulation.
﹀
|
论文目录: |
︿
摘要 I Abstract II 目录 III 主要符号对照表 1 第一章 绪论 2 1.1蝎毒的研究概述 2 1.1.1蝎毒的化学成分 2 1.1.2蝎肽的成分分类 2 1.1.3蝎肽的药理学作用 7 1.1.4活性多肽分离纯化的研究概述 8 1.2大肠杆菌表达系统的研究概述 9 1.2.1表达策略的选择 10 1.2.2表达载体和宿主菌的选择 10 1.2.3偏好大肠杆菌密码子的优化 10 1.2.4重组蛋白表达可溶性的优化 11 1.2.5重组蛋白的纯化方法 12 1.2.6大肠杆菌表达系统的优缺点 14 1.3 结构生物学的研究概况 14 1.3.1 X-Ray晶体学 14 1.3.2 核磁共振波谱法 15 1.3.3 冷冻电子显微学 16 1.4 血管栓塞性疾病 16 1.2.1 概述 16 1.2.2 凝血通路及凝血因子X 17 1.5 本课题的研究方向及立题依据 18 第二章 东亚钳蝎BMK M10的分离鉴定 20 2.1 序言 20 2.2 实验材料 20 2.2.1 材料与试剂 20 2.2.2 仪器与设备 20 2.3 实验方法 21 2.3.1 蝎毒多肽的分离纯化 21 2.3.2 质谱分析和氨基酸测序 22 2.4 实验结果 22 2.4.1 BMK-M10的纯化 22 2.4.2 氨基酸序列鉴定 23 2.5 讨论 24 2.6 小结 25 第三章 重组Bmk-M10的表达纯化与鉴定 26 3.1序言 26 3.2实验材料 26 3.2.1材料与试剂 26 3.2.2 仪器与设备 27 3.3实验方法 28 3.3.1培养基及常用试剂的配制 28 3.3.2重组rBMK-M10多肽的原核表达与纯化 29 3.3.3 重组多肽Toxin BmKaTX15的鉴定 32 3.4结果与分析 32 3.4.1密码子的优化调整 32 3.4.2 重组多肽纯化结果 33 3.4.3 重组多肽鉴定结果 34 3.5讨论 35 3.6小结 35 第四章:重组蛋白rBMK-M10的三维结构探索 37 4.1 序言 37 4.2 材料与方法 38 4.2.1 材料与试剂 38 4.2.2 仪器与设备 38 4.3 实验方法 39 4.3.1 培养基配方 39 4.3.2 原核表达15N标记重组多肽rBMK-M10 40 4.3.3 15N标记的重组多肽rBMK-M10的鉴定 42 4.4 实验结果 42 4.4.1 重组多肽表达及纯化结果 42 4.4.2 重组多肽表达产物的鉴定 43 4.5 讨论 44 4.6 小结 44 第五章:BMK-M10的靶点结合验证 45 5.1 序言 45 5.2 材料与设备 45 5.2.1 材料与试剂 45 5.2.2 仪器设备 45 5.3 实验方法 46 5.4 实验结果 46 5.5 讨论 47 5.6 小结 48 总结与展望 49 参考文献 50 致谢 55 北京大学学位论文原创性声明和使用授权说明 56 学位论文答辩委员会名单 57 个人简介 58
﹀
|
参考文献: |
︿
[] Frank Bosmans, Jan Tytgat, Voltage-gated sodium channel modulation by scorpion α-toxins, Toxicon, Volume 49, Issue 2, 2007, Pages 142-158. []国家药典委员会. 中华人民共和国药典[S].二部.北京: 中国医药科技出版社,2015: 248 [] 刘炳仁.蝎毒的采集和加工技术[J].华夏星火,2003(Z1):77. [] 冯幼,肖森光,罗志强,李志英,潘挺,吴丹.蝎毒的成分及其应用[J].饲料博览,2012(04):47-50. [] 张传标,方成武,刘守金,纪开明.东亚钳蝎生药学及药理学研究概况[J].安徽中医学院学报,2009,28(02):57-60. [] 余茂耘,韦传宝.蝎毒的生理活性成分及临床应用[J].中国临床康复,2004(09):1754-1755. [] Almaaytah A, Albalas Q.Scorpion venom peptides with no disulfide bridges: a review. Peptides. 2014 Jan;51:35-45. doi: 10.1016/j.peptides.2013.10.021. [] L.D.?Possani,?B.?Becerril,?M.?Delepierre,?J.?Tytgat.Scorpion toxins specific for Na+-channels.Eur J Biochem,?264?(1999), pp.?287-300. [] Cyril Goudet, Cheng-Wu Chi, Jan Tytgat, An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch, Toxicon, Volume 40, Issue 9, 2002, Pages 1239-1258. [] Yang S, Xiao Y, Kang D, Liu J, Li Y, Undheim EA, Klint JK, Rong M, Lai R, King GF. Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17534-9. [] Martha Pedraza Escalona, Lourival D. Possani. Scorpion beta-toxins and voltage-gated sodium channels: interactions and effects. Front. Biosci. (Landmark Ed) 2013, 18(2), 572–587. [] A.?Borges,?M.R.?Graham.Phylogenetics of scorpions of medical importance.P.?Gopalakrishnakone,?J.?Calvete?(Eds.),?Venom Genomics and Proteomics. Toxinology,?Springer,?Dordrecht?(2016),?10.1007/978-94-007-6649-5_36-2 [] Caliskan F. Scorpion Venom Research Around the World: Turkish Scorpions. In: Gopalakrishnakone P., editor.?Toxinology: Scorpion Venoms.?Springer; Dordrecht, The Netherlands: 2013. pp. 1–19. []Del Río-Portilla F., Hernández-Marín E., Pimienta G., Coronas F.V., Zamudio F.Z., Rodríguez de la Vega R.C., Wanke E., Possani L.D. NMR solution structure of Cn12, a novel peptide from the Mexican scorpion?Centruroides noxius?with a typical beta-toxin sequence but with alpha-like physiological activity.?Eur. J. Biochem.?2004;271:2504–2516. []Possani LD, Becerril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+-channels.?European Journal of Biochemistry.?1999;264(2):287–300.? [] Mineev KS, Kuzmenkov AI, Arseniev AS, Vassilevski AA. Structure of MeuNaTxα-1 toxin from scorpion venom highlights the importance of the nest motif. Proteins. 2021 Mar 13. [] Benzinger GR, Drum CL, Chen L-Q, Kallen RG, Hanck DA, Hanck D. Differences in the binding sites of two site-3 sodium channel toxins.?Pflugers Archiv European Journal of Physiology.?1997;434(6):742–749. [] Jiménez-Vargas J.M., Restano-Cassulini R., Possani L.D. Toxin modulators and blockers of hERG K(+) channels.?Toxicon.?2012;60:492–501. doi:?10.1016/j.toxicon.2012.03.024. [] Cyril Goudet, Cheng-Wu Chi, Jan Tytgat, An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch, Toxicon, Volume 40, Issue 9, 2002, Pages 1239-1258.
[] Srinivasan K.N., Sivaraja V., Huys I., Sasaki T., Cheng B., Kumar T.K.S., Sato K., Tytgat J., Yu C., San B.C.C., et al. kappa-Hefutoxin1, a novel toxin from the scorpion?Heterometrus fulvipes?with unique structure and function. Importance of the functional diad in potassium channel selectivity.?J. Biol. Chem.?2002;277:30040–30047. []Chen Z., Luo F., Feng J., Yang W., Zeng D., Zhao R., Cao Z., Liu M., Li W., Jiang L., et al. Genomic and Structural Characterization of Kunitz-Type Peptide LmKTT-1a Highlights Diversity and Evolution of Scorpion Potassium Channel Toxins.?PLoS ONE.?2013;8:e60201. [] mith J.J., Hill J.M., Little M.J., Nicholson G.M., King G.F., Alewood P.F. Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif.?Proc. Natl. Acad. Sci. USA.?2011;108:10478–10483. doi:?10.1073/pnas.1103501108.? [] Gao B., Harvey P.J., Craik D.J., Ronjat M., De Waard M., Zhu S. Functional evolution of scorpion venom peptides with an inhibitor cystine knot fold.?Biosci. Rep.?2013;33:e00047. [] Cremonez C.M., Maiti M., Peigneur S., Cassoli J.S., Dutra A.A.A., Waelkens E., Lescrinier E., Herdewijn P., de Lima M.E., Pimenta A.M.C., et al. Structural and Functional Elucidation of Peptide Ts11 Shows Evidence of a Novel Subfamily of Scorpion Venom Toxins.?Toxins.?2016;8:288. []DeBin JA, Maggio JE, Strichartz GR. Purification and characterization of chlorotoxin, a chloride channel ligand from the venom of the scorpion. Am J Physiol. 1993 Feb;264(2 Pt 1):C361-9. []赵灿国,孔天翰.蝎毒素调控离子通道的研究新进展[J].河南职工医学院学报,2005(01):61-64. []于耀清,陈军.电压门控性钾、钙、钠离子通道的结构及分类[J].中华神经医学杂志,2005(05):515-520. []SA MSO M, TRU JIL L O R, GU RROL A G B, et al.Three-dimensional location of the im peratoxin A bindingsite on the ryanodine receptor[J] .JCell Biol, 1999, 14 6 (2 ) :493-4 99. []Almaaytah, A., Albalas, Q., 2014. Scorpion venom peptides with no disulfide bridges:a review. Peptides 51, 35e45. [] Kuhn-Nentwig, L., 2003. Antimicrobial and cytolytic peptides of venomous ar-thropods. Cell. Mol. Life Sci. 60, 2651e2668. [] Huang, Y., Huang, J., Chen, Y., 2010. Alpha-helical cationic antimicrobial peptides:relationships of structure and function. Protein Cell 1, 143e152. [] Mookherjee, N., Hancock, R.E., 2007. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci. 64, 922e933. [] Ortiz E, Gurrola GB, Schwartz EF, Possani LD (2014) Scorpion venom components as potential candidates for drug development. Toxi-con 93:125–135. [] Zeng XC, Corzo G, Hahin R (2005) Scorpion venom peptides without disulfide bridges. IUBMB Life 57(1):13–21. []Cao, L., Dai, C., Li, Z., Fan, Z., Song, Y., Wu, Y., Cao, Z., Li, W., 2012. Antibacterial ac-tivity and mechanism of a scorpion venom peptide derivative in vitro and in vivo. PLoS One 7, e40135. [] Burke, J.D., Fish, E.N., 2009. Antiviral strategies: the present and beyond. Curr.Mol.Pharmacol. 2, 32e39. [] Gomes da Mata éC, Mour?o CBF, Rangel M, Schwartz EF (2017) Antiviral activity of animal venom peptides and related com-pounds. J Venom Anim Toxins Incl Trop Dis 23:3 []张乔,赵文静,旺建伟.蝎毒的药理作用和临床应用研究进展[J].中医药信息,2006(02):26-28. [] Ahluwalia S, Shah N (2014) Animal venom for treating breast cancer. Int J Pharm Pharm Sci 6(9):24–30. []Oukkache N, Chgoury F, Lalaoui M, Cano AA, Ghalim N (2013) Comparison between two methods of scorpion venom milking in Morocco. J Venom Anim Toxins Incl Trop Dis 19(1):5. []Han, S., Yi, H., Yin, S.J., Chen, Z.Y., Liu, H., Cao, Z.J., Wu, Y.L., Li, W.X., 2008. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. J. Biol. Chem. 283, 19058e19065. [] Takacs, Z., Toups, M., Kollewe, A., Johnson, E., Cuello, L.G., Driessens, G.,Biancalana, M., Koide, A., Ponte, C.G., Perozo, E., Gajewski, T.F., Suarez-Kurtz, G.,Koide, S., Goldstein, S.A., 2009. A designer ligand specific for Kv1.3 channels from a scorpion neurotoxin-based library. Proc. Natl. Acad. Sci. U. S. A. 106,2221 1e22216. []Harwood LM, Moody CJ. Experimental organic chemistry:Principles and Practice.?Oxford:Blacwell Science;?1989:180–5. [] Walls D, Loughran ST.?Protein chromatography:Methods and protocols, methods in molecular biology.?2011;681 [] Gerberding SJ, Byers CH. Preparative ion-exchange chromatography of proteins from dairy whey.?J Chromatogr A.?1998;808:141–51. [] Gerberding SJ, Byers CH. Preparative ion-exchange chromatography of proteins from dairy whey.?J Chromatogr A.?1998;808:141–51. [] Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M. Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev. 2009 Sep-Oct;28(5):816-43. doi: 10.1002/mas.20204. PMID: 19072760. [] Hunt G, Nashabeh W. Capillary electrophoresis sodium dodecyl sulfate nongel sieving analysis of a therapeutic recombinant monoclonal antibody: a biotechnology perspective. Anal Chem. 1999 Jul 1;71(13):2390-7. doi: 10.1021/ac981209m. PMID: 10405607. [] Zaifang Zhu, Joann J. Lu, Shaorong Liu Anal Chim Acta.?Author manuscript; available in PMC 2013 Jan 4. Published in final edited form as: Anal Chim Acta. 2012 Jan 4; 709: 21–31.?Published online 2011 Oct [] Porowińska D, Wujak M, Roszek K, Komoszyński M. Prokariotyczne systemy ekspresyjne [Prokaryotic expression systems]. Postepy Hig Med Dosw (Online). 2013 Mar 1;67:119-29. Polish. [] Zilberberg N, Gordon D, Pelhate M, Adams ME, Norris TM, Zlotkin E, Gurevitz M (1996) Functional expression and genetic alteration of an alpha scorpion neurotoxin. Biochemistry 35:10215–10222 [] Yan, F., Qian, M.L., Yang, F., Cai, F., Yuan, Z., Lai, S.T., Zhao, X.Y., Gou, L.T., Hu, Z.G.,and Deng, H.X. 2007.?A novel pro-apoptosis protein PNAS-4 from?Xenopus laevis?: Cloning, expression, purification, and polyclonal antibody production.?Biochemistry (Moscow)?72:664‐671. [] Peng L, Xu Z, Fang X, Wang F, Yang S, Cen P. Preferential codons enhancing the expression level of human beta-defensin-2 in recombinant Escherichia coli. Protein Pept Lett. 2004 Aug;11(4):339-44. [] Oberg, K. , Chrunyk, B.A. , Wetzel, R. , and Fink, A.L. 1994.?Native‐like secondary structure in interleukin‐1‐beta inclusion‐bodies by attenuated total reflectance Ftir.?Biochemistry?33:2628‐2634. [] Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol. 2018 Jan;106:803-822. [] Ferrer, M. , Chernikova, T.N. , Timmis, K.N. , and Golyshin, P.N. 2004.?Expression of a temperature‐sensitive esterase in a novel chaperone‐based?Escherichia coli?strain.?Appl. Environ. Microbiol.?70:4499‐4504. [] Stieber, D. , Gabant, P. , and Szpirer, C. 2008.?The art of selective killing: Plasmid toxin/antitoxin systems and their technological applications.?Biotechniques?45:344‐346. [] Brown, B.L. , Grigoriu, S. , Kim, Y. , Arruda, J.M. , Davenport, A. , Wood, T.K. , Peti, W. , and Page, R. 2009.?Three dimensional structure of the MqsR:MqsA complex: A novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties.?PLoS Pathog.?5:e100706.? [] Chou, C.P. 2007.?Engineering cell physiology to enhance recombinant protein production in?Escherichia coli?.?Appl. Microbiol. Biotechnol.?76:521‐532. [] Sahdev, S. , Khattar, S.K. , and Saini, K.S. 2008.?Production of active eukaryotic proteins through bacterial expression systems: A review of the existing biotechnology strategies.?Mol. Cell Biochem.?307:249‐264. [] Pinsach, J. , de Mas, C. , Lopez‐Santin, J. , Striedner, G. , and Bayer, K. 2008.?Influence of process temperature on recombinant enzyme activity in?Escherichia coli?fed‐batch Cultures.?Enzyme Microb. Technol.?43:507‐512. [] Lillehoj EP, Malik VS. Protein purification. Adv Biochem Eng Biotechnol. 1989;40:19-71. [] Rodriguez de la Vega, R. C., Schwartz, E. F., and Possani, L. D. (2010) Mining on scorpion venom biodiversity,?Toxicon,?56, 1155-1161. []范翠英,冯利兴,樊金玲,果德安,刘璇.重组蛋白表达系统的研究进展[J].生物技术,2012,22(02):76-80. [] 钟军,蒋雪梅.核磁共振波谱在药物研发中的应用进展[J].光谱学与光谱分析,2015,35(01):282-286. [] Dessau MA, Modis Y. Protein crystallization for X-ray crystallography. J Vis Exp. 2011 Jan 16;(47):2285. doi: 10.3791/2285. PMID: 21304455; PMCID: PMC3182643. [] 陈振国,徐彦辉.分辨率革命——冷冻电子显微学在结构生物学研究中的进展[J].复旦学报(医学版),2017,44(06):799-805. [] Wang HW, Wang JW. How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci. 2017 Jan;26(1):32-39. [] Dessau MA, Modis Y. Protein crystallization for X-ray crystallography. J Vis Exp. 2011 Jan 16;(47):2285. doi: 10.3791/2285. PMID: 21304455; PMCID: PMC3182643. [] 杜天鹏. 几个多肽的液体核磁共振结构研究[D].中国科学院研究生院(武汉物理与数学研究所),2014. [] Helgaker J,Jaszunski M,Rund K.Chemical Reviews,1999,99:293. [] Rabi I. Space quantization in gyrating magnetic field[J]. Physical Review, 1937,51(8):652-654. [] 钟军,蒋雪梅.核磁共振波谱在药物研发中的应用进展[J].光谱学与光谱分析,2015,35(01):282-286. [] Wüthrich K. The way to NMR structures of proteins.?Nat Struct Biol.?2001;8:923–925. [] Sugiki T., Fujiwara T., Kojima C. Latest approaches for efficient protein production in drug discovery.?Expert Opin Drug Discov.?2014;9:1189–1204.? [] Tivol WF, Briegel A, Jensen GJ (October 2008). "An improved cryogen for plunge freezing". Microscopy and Microanalysis. 14 (5): 375–379. [] Cheng Y, Grigorieff N, Penczek PA, Walz T (April 2015). "A primer to single-particle cryo-electron microscopy". Cell. 161 (3): 438–449. [] Rosendaal F R. Venous thrombosis: a multicausal disease [J]. Lancet, 1999, 353(9159): 1167-73. [] Wendelboe AM, Raskob GE. Global Burden of Thrombosis: Epidemiologic Aspects. Circ Res. 2016 Apr 29;118(9):1340-7. [] Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008 Feb 21;451(7181):914-8. [] Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet. 2021 Jul 3;398(10294):64-77. [] Calvet D, Bracard S, Mas J L, et al. Treatment of arterial and venous brain ischemia. Experts' recommendations: stroke management in the intensive care unit [] Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. Lancet. 2021 Jul 3;398(10294):64-77. [] Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008 Feb 21;451(7181):914-8. [] Leadley R J. Coagulation factor Xa inhibition: biological background and rationale [J]. Curr. Top. Med. Chem., 2001, 1(2): 151-9. [] Ansell J. Factor Xa or thrombin: is factor Xa a better target? J Thromb Haemost. 2007 Jul;5 Suppl 1:60-4. [] Mohamed Abd El-Aziz T, Garcia Soares A, Stockand JD. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel). 2019 Sep 25;11(10):564. []Zambelli?VO,?Pasqualoto?KF,?Picolo?G, et al.?Harnessing the knowledge of animal toxins to generate drugs. Pharmacol Res.?2016;112:30–36. []Schmidtko?A,?Lotsch?J,?Freynhagen?R, et al.?Ziconotide for treatment of severe chronic pain. Lancet.?2010;375:1569–1577.? []King?GF.?Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther.?2011;11(11):1469–1484.? []Chi?V,?Pennington?MW,?Norton?RS, et al.?Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon.?2012;59:529–546. []Ansell J, Hirsh J, Hylek E, et al. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition) [J]. Chest,2008, 133(6 Suppl): 160S-98S. []郝晓云,彭延吉,肖长江."全蝎提取液对血液凝固的影响."?血栓与止血学?.04(2001):158-159. [] Netirojjanakul C, Miranda LP. Progress and challenges in the optimization of toxin peptides for development as pain therapeutics. Curr Opin Chem Biol. 2017 Jun;38:70-79.?
﹀
|
分类号: |
R93
|
开放日期: |
2026-08-02
|