- 无标题文档
查看论文信息

论文题名(中文):

 罹患重度牙周炎上颌磨牙 拔牙牙槽嵴保存临床应用研究    

作者:

 危伊萍    

学号:

 B1811110533    

论文语种:

 chi    

学科名称:

 医学 - 口腔医学 - 牙周病学    

学生类型:

 博士    

学校:

 北京大学医学部    

院系:

 口腔医学院    

专业:

 牙周病学    

第一导师姓名:

 胡文杰    

论文完成日期:

 2021-03-01    

论文答辩日期:

 2021-05-17    

论文题名(外文):

 Clinical application of alveolar ridge preservation following extraction of maxillary molar s with severe periodontitis    

关键词(中文):

 重度牙周炎 ; 牙槽嵴保存 ; 上颌磨牙 ; 种植 ; 组织学    

关键词(外文):

 Severe periodontitis ; Alveolar ridge preservation ; Maxillary molars ; Implant ; Histology    

论文文摘(中文):

牙周炎是我国成年人失牙的主要原因。种植治疗近年来逐步发展成为牙列缺损后的一种常规修复方法。上颌磨牙邻近上颌窦,牙周炎患牙拔除前牙槽骨已有严重 、不规则的吸收,加上牙槽窝在自然愈合过程中牙槽骨的高度及宽度均会发生不同程度的降低,因此常无法满足种植所需的骨组织条件。针对无法保留需要拔除的牙周炎上颌磨牙在拔牙后如何实现 剩余牙槽嵴的保存及牙槽窝的重建成为目前的研究热点。牙槽嵴保存即在拔牙同期进行拔牙窝内生物材料移植、支撑和充填牙槽窝,以阻断或减缓牙槽嵴吸收,实现软硬组织保存或增量的手术。
本研究的目的包括:
1.探讨针对罹患重度牙周炎上颌磨牙,通过彻底清创、微创拔牙后,微翻瓣和应用去蛋白牛骨基质颗粒及可吸收膜、胶原蛋白海绵覆盖拔牙创牙槽嵴保存术后,软硬组织变化以及种植时需要骨增量手术的比例。
2.探讨罹患重度牙周炎上颌磨牙牙槽嵴保存术后不同愈合时间骨组织形态学特点及相关因素分析。
3.通过临床及影像学指标评价罹患重度牙周炎上颌磨牙拔牙牙槽嵴保存与自然愈合后实施种植修复 1-4 年种植体存留率、成功率、种植体周软组织情况以及边缘骨水平变化。
围绕上述研究目标,采用临床回顾性研究,通过临床检查与影像学评价罹患重度牙周炎上颌磨牙牙槽嵴保存后软硬组织变化,以及后续种植治疗及修复负重 1-4 年后临床疗效。此外,通过骨组织切片的组织学和形态计量学分析牙槽嵴保存愈合后骨组织形态学特点。
通过以上研究,可以得出以下结果和结论:
1.罹患重度牙周炎无法保留的上颌磨牙拔牙牙槽嵴保存后,可以改善该部位牙槽嵴骨高度、骨宽度及牙槽窝体积,从而减少 自然愈 合后种植治疗阶段进行骨增量手术的比例,减少种植治疗阶段的创伤性和复杂性。
2.罹患重度牙周炎上颌磨牙拔除后应用去蛋白牛骨基质颗粒及可吸收膜 、胶原蛋白海绵覆盖拔牙创牙槽嵴保存后愈合 6 个月,骨组织切片形态计量学结果显示新生骨、残留的去蛋白牛骨基质颗粒与结缔组织大约各占 1/ 3 ,约一半的去蛋白牛骨基质颗粒与新生骨组织直接接触。
3.罹患重度牙周炎的上颌磨牙拔牙牙槽嵴保存术 经 过 6 个月的愈合时间 ,新生骨百分比、残留去蛋白牛骨基质颗粒百分比和去蛋白牛骨基质颗粒与新生骨接触周长百分比 与患者年龄、性别、牙位(第一磨牙或第二磨牙)、拔牙窝愈合时间 、种植体初期稳定性系数和骨质无显著相关关系。
4.罹患重度牙周炎上颌磨牙拔牙牙槽嵴保存术后实施种植修复并负重 1-4 年时种植体存留率、成功率、种植体周软组织健康状况和种植体周边缘骨丧失结果与自然愈合类似。
5. 在罹患重度牙周炎上颌磨牙拔除后行 牙槽嵴保存术,在种植修复观察期内效果肯定,是一种可靠的骨增量方式。
上述结论为深入开展罹患重度牙周炎上颌磨牙区拔牙牙槽嵴保存术及后续种植治疗的推广应用提供了临床和影像学证据及一定的生物学基础,对于未来牙周病的治疗设计和牙周病患者的种植 治疗,具有 十分重要的临床参考价值。

文摘(外文):

Periodontitis is the main cause of tooth loss in Chinese adults. In recent years, implant therapy has gradually developed into a routine restoration method after dentition defect. Maxillary molars are adjacent to maxillary sinus The alveolar bone has been seriously and irregularly absorbed before the extraction due to severe periodontitis. In addition, the height and width of the alveolar bone will decrease to varying degrees during the natural healing process of the alveolar socket. Thus it is often unable to meet the bone tissue conditions required for implantation. How to preserve the remaining alveolar ridge and reconstruct the
alveolar socket after tooth extraction have become an important topic of research. Ridge preservation was defined as any procedures that takes place immediately after tooth extraction to preserve or increase ridge volume within or beyond the skeletal envelope that exists at the time of extraction.
The objectives of this retrospective human clinical study were to investigate the changes of soft and hard tis sues of maxillary molars suffering from severe periodontitis after thorough debridement, minimally invasive tooth extraction, microflap, application of deproteinized bovine bone mineral particles, absorbable membrane and collagen sponge to cover the tooth extraction wound, and the proportion of bone augmentation surgery during implantation. Secondly, this study aimed to explore the histomorphometric characteristics and related factors of bone tissue at different healing time after alveolar ridge preservation.
Thirdly, this study aimed to evaluate the survive rate, success rate, soft tissue conditions and marginal bone level changes of implants following alveolar ridge preservation at maxillary molars extraction sockets with severe periodontitis, compared to natural healing.
Focusing on the above research objectives, this retrospective study evaluated the changes of soft and hard tissues of maxillary molars with severe periodontitis after alveolar ridge preservation, as well as the clinical efficacy of subsequent implant treatment and
restoration with 1-4 years follow up. In addition, histological biopsies were evaluated in terms of histological and histomorphometric outcomes.
Within the limitation of this study, we can draw the following conclusions:
1. Alveolar ridge preservation of maxillary molars suffering from severe periodontitis can improve the height, width and volume of alveolar ridge, thus reducing the proportion of bone augmentation surgery and the trauma and complexity of implant treatment, compared to natural healing.
2. Histomorphometric results of bone core samples showed that new bone, residual deproteinized bovine bone mineral particles and connective tissue a ccounted for about 1/3 each, and about half of residual deproteinized bovine bone mineral particles were in contact with new bone tissue directly.
3. After 6 months' healing time, the percentage of new bone, the percentage of residual deproteinized bovine bone mineral particles and the percentage of contact between deproteinized bovine bone mineral particles and new bone have stabilized, which
was not affected by the patient's age, sex, tooth position (first molar or second molar) and healing time, and didn't affect the initial stability quotient and bone quality in the subsequent implant treatment.
4. The survival rate, success rate, soft tissue conditions and marginal bone loss of implants following alveolar ridge preservation at maxillary molars extraction sockets with severe periodontitis were similar to those of natural healing.
5. Preservation of alveolar ridge after extraction of maxillary molars with severe periodontitis is a reliable way of bone augmentation.
The above conclusions provide clinical and imaging evidences and a certain biological basis for the promotion and application of alveolar ridge preservation and subsequent implant therapy in maxillary molars extraction sockets with severe periodontitis, and have a very important clinical reference value for the treatment plan and implant therapy for patients with severe periodontitis.

论文目录:
第一章 文献综述 1
1.1 磨牙拔牙牙槽嵴保存的效果评价及影响因素 1
1.1.1 磨牙拔牙窝自然愈合后形态学改变 1
1.1.2 磨牙拔牙牙槽嵴保存的效果评价 3
1.1.3 拔牙窝愈合和牙槽嵴保存效果的影响因素 9
1.2 磨牙拔牙牙槽嵴保存应用去蛋白牛骨基质的组织学与免疫组织化学研究 10
1.2.1 组织学研究 11
1.2.2 免疫组织化学研究 13
1.3 磨牙拔牙牙槽嵴保存后种植修复效果评价 18
1.3.1 种植修复效果评价指标 18
1.3.2 磨牙拔牙牙槽嵴保存后种植修复效果研究进展 19
1.4 总结 21
第二章 引言 22
第三章 罹患重度牙周炎上颌磨牙拔牙牙槽嵴保存效果评价 24
3.1 研究目的 24
3.2 材料与方法 24
3.2.1 研究对象 25
3.2.2 分组 25
3.2.3 个人基本情况及临床记录指标 26
3.2.4 影像学检查 27
3.2.5 统计分析 29
3.3 结果 30
3.3.1 研究对象基本情况 30
3.3.2 自然愈合组和牙槽嵴保存组愈合后牙槽骨高度及宽度的变化 31
3.3.3 自然愈合组和牙槽嵴保存组上颌窦底气化情况 31
3.3.4 自然愈合组和牙槽嵴保存组愈合后牙槽骨体积的变化 32
3.3.5 自然愈合组和牙槽嵴保存组颊侧角化组织宽度变化 33
3.3.6 自然愈合组和牙槽嵴保存组种植阶段骨增量手术比例 33
3.3.7 自然愈合组和牙槽嵴保存组颊腭侧骨壁高度变化值的相关因素分析 34
3.4 讨论 37
3.5 结论 38
第四章 罹患重度牙周炎上颌磨牙拔牙牙槽嵴保存组织学 研究 39
4.1 研究目的 40
4.2 材料与方法 40
4.2.1 主要仪器设备 40
4.2.2 主要试剂材料 40
4.2.3 研究对象 41
4.2.4 骨组织样本留取 41
4.2.5 种植手术记录指标 41
4.2.6 骨组织样本脱钙冲洗 包埋切片 42
4.2.7 苏木精伊红染色步骤 42
4.2.8 苏木精伊红染色定性分析 42
4.2.9 苏木精伊红染色形态计量学分析 43
4.2.10 统计分析 43
4.3 结果 43
4.3.1 研究对象基本情况 43
4.3.2 苏木精伊红染色结果定性分析 44
4.3.3 苏木精伊红染色形态计量学分析 45
4.3.4 不同愈合时间的骨形态计 量学结果 46
4.3.5 骨形态计量学结果与患者及种植位点结果的相关关系 46
4.4 讨论 47
4.5 结论 49
第五章 罹患重度牙周炎上颌磨牙拔牙牙槽嵴保存后种植修复效果评价 51
5.1 研究目的 51
5.2 材料方法 52
5.2.1 研究对象 52
5.2.2 种植手术 52
5.2.3 种植 II 期手术及修复 52
5.2.4 随访复查 53
5.2.5 统计分析 54
5.3 结果 55
5.3.1 研究对象基本情况 55
5.3.2 自然愈合组和牙槽嵴保存组种植体临床指标变化 56
5.3.3 自然愈合组和牙槽嵴保存组颊侧角化组织宽度变化 58
5.3.4 自然愈合组和牙槽嵴保存组种植体边缘骨丧失情况 58
5.3.5 自然愈合组和牙槽嵴保存组种植体存留率及成功率 59
5.4 讨论 59
5.5 结论 61
第六章 结论与展望 62
6.1 主要结果与结论 62
6.2 主要创新点 62
6.3 本研究的不足之处 63
6.4 进一步工作设想 63
参考文献 64
致谢 78
北京大学学位论文原创性声明和使用授权说明 79
个人简历、在 学 期 间发 表的 学术论文与研究成果 81
参考文献:

[1] Frencken J E, Sharma P, Stenhouse L, et al. Global epidemiology of dental caries and severe periodontitis - a comprehensive review [J]. J Clin Periodontol, 2017, 44 Suppl 18: 94-105.

[2] Dannewitz B, Krieger J K, Husing J, et al. Loss of molars in periodontally treated patients: a retrospective analysis five years or more after active periodontal treatment [J]. J Clin Periodontol, 2006, 33(1): 53-61.

[3] Hammerle C H, Araujo M G, Simion M, et al. Evidence-based knowledge on the biology and treatment of extraction sockets [J]. Clin Oral Implants Res, 2012, 23 Suppl 5: 80-82.

[4] Vignoletti F, Matesanz P, Rodrigo D, et al. Surgical protocols for ridge preservation after tooth extraction. A systematic review [J]. Clin Oral Implants Res, 2012, 23 Suppl 5: 22-38.

[5] Van der Weijden F, Dell'Acqua F, Slot D E. Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review [J]. J Clin Periodontol, 2009, 36(12): 1048-1058.

[6] Tan W L, Wong T L, Wong M C, et al. A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans [J]. Clin Oral Implants Res, 2012, 23 Suppl 5: 1-21.

[7] Schropp L, Wenzel A, Kostopoulos L, et al. Bone healing and soft tissue contour changes following single-tooth extraction: a clinical and radiographic 12-month prospective study [J]. Int J Periodontics Restorative Dent, 2003, 23(4): 313-323.

[8] Covani U, Ricci M, Bozzolo G, et al. Analysis of the pattern of the alveolar ridge remodelling following single tooth extraction [J]. Clin Oral Implants Res, 2011, 22(8): 820-825.

[9] Couso-Queiruga E, Stuhr S, Tattan M, et al. Post-extraction dimensional changes: A systematic review and meta-analysis [J]. J Clin Periodontol, 2021, 48(1): 126-144.

[10] Ahn J J, Shin H I. Bone tissue formation in extraction sockets from sites with advanced periodontal disease: a histomorphometric study in humans [J]. Int J Oral Maxillofac Implants, 2008, 23(6): 1133-1138.

[11] Kim J H, Koo K T, Capetillo J, et al. Periodontal and endodontic pathology delays extraction socket healing in a canine model [J]. J Periodontal Implant Sci, 2017, 47(3): 143-153.

[12] Lindhe J, Cecchinato D, Bressan E A, et al. The alveolar process of the edentulous maxilla in periodontitis and non-periodontitis subjects [J]. Clin Oral Implants Res, 2012, 23(1): 5-11.

[13] Zhao L, Wei Y, Xu T, et al. Changes in alveolar process dimensions following extraction of molars with advanced periodontal disease: A clinical pilot study [J]. Clin Oral Implants Res, 2019, 30(4): 324-335.

[14] Sharan A, Madjar D. Maxillary sinus pneumatization following extractions: a radiographic study [J]. Int J Oral Maxillofac Implants, 2008, 23(1): 48-56.

[15] Cavalcanti M C, Guirado T E, Sapata V M, et al. Maxillary sinus floor pneumatization and alveolar ridge resorption after tooth loss: a cross-sectional study [J]. Braz Oral Res, 2018, 32: e64.

[16] Hameed S, Bakhshalian N, Alwazan E, et al. Maxillary Sinus Floor and Alveolar Crest Alterations Following Extraction of Single Maxillary Molars: A Retrospective CBCT Analysis [J]. Int J Periodontics Restorative Dent, 2019, 39(4): 545-551.

[17] Nunes L S, Bornstein M M, Sendi P, et al. Anatomical characteristics and dimensions of edentulous sites in the posterior maxillae of patients referred for implant therapy [J]. Int J Periodontics Restorative Dent, 2013, 33(3): 337-345.

[18] Padhye N M, Bhatavadekar N B. Quantitative Assessment of the Edentulous Posterior Maxilla for Implant Therapy: A Retrospective Cone Beam Computed Tomographic Study [J]. J Maxillofac Oral Surg, 2020, 19(1): 125-130.

[19] Shanbhag S, Karnik P, Shirke P, et al. Cone-beam computed tomographic analysis of sinus membrane thickness, ostium patency, and residual ridge heights in the posterior maxilla: implications for sinus floor elevation [J]. Clin Oral Implants Res, 2014, 25(6): 755-760.

[20] Sulzer T H, Bornstein M M, Buser D. [Indications for oral implantology in a referral clinic. A three-year retrospective analysis of 737 patients with 1176 implants] [J]. Schweiz Monatsschr Zahnmed, 2004, 114(5): 444-450.

[21] Seong W J, Barczak M, Jung J, et al. Prevalence of sinus augmentation associated with maxillary posterior implants [J]. J Oral Implantol, 2013, 39(6): 680-688.

[22] Garcia-Gonzalez S, Galve-Huertas A, Aboul-Hosn Centenero S, et al. Volumetric changes in alveolar ridge preservation with a compromised buccal wall: a systematic review and meta-analysis [J]. Med Oral Patol Oral Cir Bucal, 2020, 25(5): e565-e575.

[23] Avila-Ortiz G, Chambrone L, Vignoletti F. Effect of alveolar ridge preservation interventions following tooth extraction: A systematic review and meta-analysis [J]. J Clin Periodontol, 2019, 46 Suppl 21: 195-223.

[24] Barootchi S, Wang H L, Ravida A, et al. Ridge preservation techniques to avoid invasive bone reconstruction: A systematic review and meta-analysis: Naples Consensus Report Working Group C [J]. Int J Oral Implantol (Berl), 2019, 12(4): 399-416.

[25] MacBeth N, Trullenque-Eriksson A, Donos N, et al. Hard and soft tissue changes following alveolar ridge preservation: a systematic review [J]. Clin Oral Implants Res, 2017, 28(8): 982-1004.

[26] Morjaria K R, Wilson R, Palmer R M. Bone healing after tooth extraction with or without an intervention: a systematic review of randomized controlled trials [J]. Clin Implant Dent Relat Res, 2014, 16(1): 1-20.

[27] Walker C J, Prihoda T J, Mealey B L, et al. Evaluation of Healing at Molar Extraction Sites With and Without Ridge Preservation: A Randomized Controlled Clinical Trial [J]. J Periodontol, 2017, 88(3): 241-249.

[28] Cardaropoli D, Tamagnone L, Roffredo A, et al. Socket preservation using bovine bone mineral and collagen membrane: a randomized controlled clinical trial with histologic analysis [J]. Int J Periodontics Restorative Dent, 2012, 32(4): 421-430.

[29] Iorio-Siciliano V, Ramaglia L, Blasi A, et al. Dimensional changes following alveolar ridge preservation in the posterior area using bovine-derived xenografts and collagen membrane compared to spontaneous healing: a 6-month randomized controlled clinical trial [J]. Clin Oral Investig, 2020, 24(2): 1013-1023.

[30] Lim H C, Shin H S, Cho I W, et al. Ridge preservation in molar extraction sites with an open-healing approach: A randomized controlled clinical trial [J]. J Clin Periodontol, 2019, 46(11): 1144-1154.

[31] Lee J S, Jung J S, Im G I, et al. Ridge regeneration of damaged extraction sockets using rhBMP-2: an experimental study in canine [J]. J Clin Periodontol, 2015, 42(7): 678-687.

[32] Lee J S, Choe S H, Cha J K, et al. Radiographic and histologic observations of sequential healing processes following ridge augmentation after tooth extraction in buccal-bone-deficient extraction sockets in beagle dogs [J]. J Clin Periodontol, 2018, 45(11): 1388-1397.

[33] Ikawa T, Akizuki T, Ono W, et al. Ridge reconstruction in damaged extraction sockets using tunnel beta-tricalcium phosphate blocks: A 6-month histological study in beagle dogs [J]. J Periodontal Res, 2020, 55(4): 496-502.

[34] Lee J B, Chu S, Amara H B, et al. The effects of hyaluronic acid and deproteinized bovine bone mineral with 10% collagen for ridge preservation in compromised extraction sockets [J]. J Periodontol, 2021

[35] Zhao L, Xu T, Hu W, et al. Preservation and augmentation of molar extraction sites affected by severe bone defect due to advanced periodontitis: A prospective clinical trial [J]. Clin Implant Dent Relat Res, 2018, 20(3): 333-344.

[36] Levi I, Halperin-Sternfeld M, Horwitz J, et al. Dimensional changes of the maxillary sinus following tooth extraction in the posterior maxilla with and without socket preservation [J]. Clin Implant Dent Relat Res, 2017, 19(5): 952-958.

[37] Lombardi T, Bernardello F, Berton F, et al. Efficacy of Alveolar Ridge Preservation after Maxillary Molar Extraction in Reducing Crestal Bone Resorption and Sinus Pneumatization: A Multicenter Prospective Case-Control Study [J]. Biomed Res Int, 2018, 2018: 9352130.

[38] Cha J K, Song Y W, Park S H, et al. Alveolar ridge preservation in the posterior maxilla reduces vertical dimensional change: A randomized controlled clinical trial [J]. Clin Oral Implants Res, 2019, 30(6): 515-523.

[39] Guarnieri R, Di Nardo D, Di Giorgio G, et al. Effectiveness of Xenograft and Porcine-Derived Resorbable Membrane in Augmentation of Posterior Extraction Sockets with a Severe Wall Defect. A Radiographic/Tomographic Evaluation [J]. J Oral Maxillofac Res, 2019, 10(1): e3.

[40] Lee J S, Cha J K, Kim C S. Alveolar ridge regeneration of damaged extraction sockets using deproteinized porcine versus bovine bone minerals: A randomized clinical trial [J]. Clin Implant Dent Relat Res, 2018, 20(5): 729-737.

[41] Sun D J, Lim H C, Lee D W. Alveolar ridge preservation using an open membrane approach for sockets with bone deficiency: A randomized controlled clinical trial [J]. Clin Implant Dent Relat Res, 2019, 21(1): 175-182.

[42] Coomes A M, Mealey B L, Huynh-Ba G, et al. Buccal bone formation after flapless extraction: a randomized, controlled clinical trial comparing recombinant human bone morphogenetic protein 2/absorbable collagen carrier and collagen sponge alone [J]. J Periodontol, 2014, 85(4): 525-535.

[43] Horvath A, Mardas N, Mezzomo L A, et al. Alveolar ridge preservation. A systematic review [J]. Clin Oral Investig, 2013, 17(2): 341-363.

[44] Barone A, Toti P, Menchini-Fabris G B, et al. Extra oral digital scanning and imaging superimposition for volume analysis of bone remodeling after tooth extraction with and without 2 types of particulate porcine mineral insertion: A randomized controlled trial [J]. Clin Implant Dent Relat Res, 2017, 19(4): 750-759.

[45] Sbordone C, Toti P, Martuscelli R, et al. Retrospective volume analysis of bone remodeling after tooth extraction with and without deproteinized bovine bone mineral insertion [J]. Clin Oral Implants Res, 2016, 27(9): 1152-1159.

[46] Fok M R, Pelekos G, Tonetti M S. Feasibility and needs for simultaneous or staged bone augmentation to place prosthetically guided dental implants after extraction or exfoliation of first molars due to severe periodontitis [J]. J Clin Periodontol, 2020, 47(10): 1237-1247.

[47] Hu K F, Lin Y C, Huang Y T, et al. A retrospective cohort study of how alveolar ridge preservation affects the need of alveolar ridge augmentation at posterior tooth implant sites [J]. Clin Oral Investig, 2021

[48] Barone A, Ricci M, Tonelli P, et al. Tissue changes of extraction sockets in humans: a comparison of spontaneous healing vs. ridge preservation with secondary soft tissue healing [J]. Clin Oral Implants Res, 2013, 24(11): 1231-1237.

[49] Cardaropoli D, Tamagnone L, Roffredo A, et al. Evaluation of Dental Implants Placed in Preserved and Nonpreserved Postextraction Ridges: A 12-Month Postloading Study [J]. Int J Periodontics Restorative Dent, 2015, 35(5): 677-685.

[50] Park S H, Song Y W, Sanz-Martin I, et al. Clinical benefits of ridge preservation for implant placement compared to natural healing in maxillary teeth: A retrospective study [J]. J Clin Periodontol, 2020, 47(3): 382-391.

[51] Mardas N, Trullenque-Eriksson A, MacBeth N, et al. Does ridge preservation following tooth extraction improve implant treatment outcomes: a systematic review: Group 4: Therapeutic concepts & methods [J]. Clin Oral Implants Res, 2015, 26 Suppl 11: 180-201.

[52] Sculean A, Stavropoulos A, Bosshardt D D. Self-regenerative capacity of intra-oral bone defects [J]. J Clin Periodontol, 2019, 46 Suppl 21: 70-81.

[53] Araujo M G, Silva C O, Misawa M, et al. Alveolar socket healing: what can we learn? [J]. Periodontol 2000, 2015, 68(1): 122-134.

[54] Akashi M, Kishimoto M, Kusumoto J, et al. Delayed Socket Healing After Dental Extraction in Patients Undergoing Myelosuppressive Chemotherapy for Hematological Malignancy: Incidence and Risk Factors [J]. J Oral Maxillofac Surg, 2018, 76(10): 2057-2065.

[55] Bertoldi C, Generali L, Forabosco A, et al. Extraction socket healing in leukemic patients: a preliminary radiographic evaluation [J]. J Biol Regul Homeost Agents, 2020, 34(6): 2379-2385.

[56] Saldanha J B, Casati M Z, Neto F H, et al. Smoking may affect the alveolar process dimensions and radiographic bone density in maxillary extraction sites: a prospective study in humans [J]. J Oral Maxillofac Surg, 2006, 64(9): 1359-1365.

[57] Lindhe J, Bressan E, Cecchinato D, et al. Bone tissue in different parts of the edentulous maxilla and mandible [J]. Clin Oral Implants Res, 2013, 24(4): 372-377.

[58] Shah F A, Sayardoust S, Omar O, et al. Does Smoking Impair Bone Regeneration in the Dental Alveolar Socket? [J]. Calcif Tissue Int, 2019, 105(6): 619-629.

[59] Darby I, Chen S T, Buser D. Ridge preservation techniques for implant therapy [J]. Int J Oral Maxillofac Implants, 2009, 24 Suppl: 260-271.

[60] Barone A, Toti P, Piattelli A, et al. Extraction socket healing in humans after ridge preservation techniques: comparison between flapless and flapped procedures in a randomized clinical trial [J]. J Periodontol, 2014, 85(1): 14-23.

[61] Barone A, Borgia V, Covani U, et al. Flap versus flapless procedure for ridge preservation in alveolar extraction sockets: a histological evaluation in a randomized clinical trial [J]. Clin Oral Implants Res, 2015, 26(7): 806-813.

[62] Engler-Hamm D, Cheung W S, Yen A, et al. Ridge preservation using a composite bone graft and a bioabsorbable membrane with and without primary wound closure: a comparative clinical trial [J]. J Periodontol, 2011, 82(3): 377-387.

[63] Lee J, Lee J B, Koo K T, et al. Flap Management in Alveolar Ridge Preservation: A Systematic Review and Meta-Analysis [J]. Int J Oral Maxillofac Implants, 2018, 33(3): 613-621.

[64] Aladmawy M A, Natto Z S, Steffensen B, et al. A Comparison between Primary and Secondary Flap Coverage in Ridge Preservation Procedures: A Pilot Randomized Controlled Clinical Trial [J]. Biomed Res Int, 2019, 2019: 7679319.

[65] 赵丽萍, 胡文杰, 徐涛, 等. 罹患重度牙周病变磨牙拔牙后两种牙槽嵴保存方法的比较 [J]. 北京大学学报(医学版), 2019, 51(03): 579-585.

[66] Chappuis V, Engel O, Reyes M, et al. Ridge alterations post-extraction in the esthetic zone: a 3D analysis with CBCT [J]. J Dent Res, 2013, 92(12 Suppl): 195-201.

[67] Spinato S, Galindo-Moreno P, Zaffe D, et al. Is socket healing conditioned by buccal plate thickness? A clinical and histologic study 4 months after mineralized human bone allografting [J]. Clin Oral Implants Res, 2014, 25(2): e120-e126.

[68] Cardaropoli D, Tamagnone L, Roffredo A, et al. Relationship between the buccal bone plate thickness and the healing of postextraction sockets with/without ridge preservation [J]. Int J Periodontics Restorative Dent, 2014, 34(2): 211-217.

[69] Canellas J, Ritto F G, Figueredo C, et al. Histomorphometric evaluation of different grafting materials used for alveolar ridge preservation: a systematic review and network meta-analysis [J]. Int J Oral Maxillofac Surg, 2020, 49(6): 797-810.

[70] Bassir S H, Alhareky M, Wangsrimongkol B, et al. Systematic Review and Meta-Analysis of Hard Tissue Outcomes of Alveolar Ridge Preservation [J]. Int J Oral Maxillofac Implants, 2018, 33(5): 979-994.

[71] Willenbacher M, Al-Nawas B, Berres M, et al. The Effects of Alveolar Ridge Preservation: A Meta-Analysis [J]. Clin Implant Dent Relat Res, 2016, 18(6): 1248-1268.

[72] Tonetti M S, Jung R E, Avila-Ortiz G, et al. Management of the extraction socket and timing of implant placement: Consensus report and clinical recommendations of group 3 of the XV European Workshop in Periodontology [J]. J Clin Periodontol, 2019, 46 Suppl 21: 183-194.

[73] Valdre G, Mongiorgi R, Ferrieri P, et al. [Scanning electron microscopy (SEM) and microanalysis (EDS) applied to the study of biomaterials for dental use. 6] [J]. Minerva Stomatol, 1995, 44(1-2): 55-68.

[74] Schlegel A K. [Bio-Oss bone replacement material. Long-term results with Bio-Oss bone replacement material] [J]. Schweiz Monatsschr Zahnmed, 1996, 106(2): 141-149.

[75] Pinholt E M, Bang G, Haanaes H R. Alveolar ridge augmentation in rats by Bio-Oss [J]. Scand J Dent Res, 1991, 99(2): 154-161.

[76] Smiler D G, Johnson P W, Lozada J L, et al. Sinus lift grafts and endosseous implants. Treatment of the atrophic posterior maxilla [J]. Dent Clin North Am, 1992, 36(1): 151-86; discussion 187-188.

[77] Piattelli M, Favero G A, Scarano A, et al. Bone reactions to anorganic bovine bone (Bio-Oss) used in sinus augmentation procedures: a histologic long-term report of 20 cases in humans [J]. Int J Oral Maxillofac Implants, 1999, 14(6): 835-840.

[78] Skoglund A, Hising P, Young C. A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral [J]. Int J Oral Maxillofac Implants, 1997, 12(2): 194-199.

[79] Cardaropoli G, Araujo M, Hayacibara R, et al. Healing of extraction sockets and surgically produced - augmented and non-augmented - defects in the alveolar ridge. An experimental study in the dog [J]. J Clin Periodontol, 2005, 32(5): 435-440.

[80] Zitzmann N U, Naef R, Scharer P. Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration [J]. Int J Oral Maxillofac Implants, 1997, 12(6): 844-852.

[81] Schlegel A K, Mohler H, Busch F, et al. Preclinical and clinical studies of a collagen membrane (Bio-Gide) [J]. Biomaterials, 1997, 18(7): 535-538.

[82] Kay S A, Wisner-Lynch L, Marxer M, et al. Guided bone regeneration: integration of a resorbable membrane and a bone graft material [J]. Pract Periodontics Aesthet Dent, 1997, 9(2): 185-94; quiz 96.

[83] Artzi Z, Tal H, Dayan D. Porous bovine bone mineral in healing of human extraction sockets. Part 1: histomorphometric evaluations at 9 months [J]. J Periodontol, 2000, 71(6): 1015-1023.

[84] Sapata V M, Llanos A H, Cesar Neto J B, et al. Deproteinized bovine bone mineral is non-inferior to deproteinized bovine bone mineral with 10% collagen in maintaining the soft tissue contour post-extraction: A randomized trial [J]. Clin Oral Implants Res, 2020, 31(3): 294-301.

[85] Aludden H, Mordenfeld A, Dahlin C, et al. Histological and histomorphometrical outcome after lateral guided bone regeneration augmentation of the mandible with different ratios of deproteinized bovine bone mineral and autogenous bone. A preclinical in vivo study [J]. Clin Oral Implants Res, 2020, 31(10): 1025-1036.

[86] Kraus R D, Stricker A, Thoma D S, et al. Sinus Floor Elevation with Biphasic Calcium Phosphate or Deproteinized Bovine Bone Mineral: Clinical and Histomorphometric Outcomes of a Randomized Controlled Clinical Trial [J]. Int J Oral Maxillofac Implants, 2020, 35(5): 1005-1012.

[87] Cardaropoli G, Araujo M, Lindhe J. Dynamics of bone tissue formation in tooth extraction sites. An experimental study in dogs [J]. J Clin Periodontol, 2003, 30(9): 809-818.

[88] Araujo M G, Lindhe J. Dimensional ridge alterations following tooth extraction. An experimental study in the dog [J]. J Clin Periodontol, 2005, 32(2): 212-218.

[89] Araujo M G, Wennstrom J L, Lindhe J. Modeling of the buccal and lingual bone walls of fresh extraction sites following implant installation [J]. Clin Oral Implants Res, 2006, 17(6): 606-614.

[90] Amler M H. The time sequence of tissue regeneration in human extraction wounds [J]. Oral Surg Oral Med Oral Pathol, 1969, 27(3): 309-318.

[91] Araujo M G, Liljenberg B, Lindhe J. Dynamics of Bio-Oss Collagen incorporation in fresh extraction wounds: an experimental study in the dog [J]. Clin Oral Implants Res, 2010, 21(1): 55-64.

[92] Chan H L, Lin G H, Fu J H, et al. Alterations in bone quality after socket preservation with grafting materials: a systematic review [J]. Int J Oral Maxillofac Implants, 2013, 28(3): 710-720.

[93] Zhao H, Hu J, Zhao L. Histological analysis of socket preservation using DBBM. A systematic review and meta-analysis [J]. J Stomatol Oral Maxillofac Surg, 2020, 121(6): 729-735.

[94] 詹雅琳, 胡文杰, 徐涛, 等. 罹患重度牙周炎磨牙拔除后应用去蛋白牛骨基质与可吸收胶原膜进行位点保存的组织学研究 [J]. 北京大学学报(医学版), 2017, 49(01): 169-175.

[95] Ramaglia L, Saviano R, Matarese G, et al. Histologic Evaluation of Soft and Hard Tissue Healing Following Alveolar Ridge Preservation with Deproteinized Bovine Bone Mineral Covered with Xenogenic Collagen Matrix [J]. Int J Periodontics Restorative Dent, 2018, 38(5): 737-745.

[96] Liu Y, Wang J, Chen F, et al. A reduced healing protocol for sinus floor elevation in a staged approach with deproteinized bovine bone mineral alone: A randomized controlled clinical trial of a 5-month healing in comparison to the 8-month healing [J]. Clin Implant Dent Relat Res, 2020, 22(3): 281-291.

[97] Mayer Y, Ginesin O, Zigdon-Giladi H. Socket preservation using xenograft does not impair implant primary stability in sheep: clinical, histological and histomorphometric study [J]. J Oral Implantol, 2020

[98] Min S, Freire M, Bakshallian N, et al. A Histologic and Histomorphometric Retrospective Analysis of the Outcomes of Ridge Preservation Using Anorganic Bovine Bone Minerals and a Nonresorbable Membrane [J]. Int J Periodontics Restorative Dent, 2018, 38(5): 637-644.

[99] Duong M, Mealey B L, Walker C, et al. Evaluation of healing at molar extraction sites with and without ridge preservation: A three-arm histologic analysis [J]. J Periodontol, 2020, 91(1): 74-82.

[100] Lekholm U, Zarb G A. Patient selection and preparation. In: Branemark P I, Zarb G A, Albrektsson T, eds. Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago, IL: Quintessence Publishing Company, 1985: 199-209.

[101] Schnutenhaus S, Edelmann C, Dreyhaupt J, et al. Alveolar ridge preservation with a collagen cone: Histological, histochemical, and immunohistochemical results of a randomized controlled clinical trial [J]. Clin Exp Dent Res, 2020, 6(3): 345-355.

[102] Milani S, Dal Pozzo L, Rasperini G, et al. Deproteinized bovine bone remodeling pattern in alveolar socket: a clinical immunohistological evaluation [J]. Clin Oral Implants Res, 2016, 27(3): 295-302.

[103] Heberer S, Al-Chawaf B, Hildebrand D, et al. Histomorphometric analysis of extraction sockets augmented with Bio-Oss Collagen after a 6-week healing period: a prospective study [J]. Clin Oral Implants Res, 2008, 19(12): 1219-1225.

[104] Mardinger O, Vered M, Chaushu G, et al. Histomorphometrical analysis following augmentation of infected extraction sites exhibiting severe bone loss and primarily closed by intrasocket reactive soft tissue [J]. Clin Implant Dent Relat Res, 2012, 14(3): 359-365.

[105] Calasans-Maia M, Resende R, Fernandes G, et al. A randomized controlled clinical trial to evaluate a new xenograft for alveolar socket preservation [J]. Clin Oral Implants Res, 2014, 25(10): 1125-1130.

[106] Lindhe J, Cecchinato D, Donati M, et al. Ridge preservation with the use of deproteinized bovine bone mineral [J]. Clin Oral Implants Res, 2014, 25(7): 786-790.

[107] Scheyer E T, Heard R, Janakievski J, et al. A randomized, controlled, multicentre clinical trial of post-extraction alveolar ridge preservation [J]. J Clin Periodontol, 2016, 43(12): 1188-1199.

[108] Carmagnola D, Adriaens P, Berglundh T. Healing of human extraction sockets filled with Bio-Oss [J]. Clin Oral Implants Res, 2003, 14(2): 137-143.

[109] Nam H W, Park J B, Lee J Y, et al. Enhanced ridge preservation by bone mineral bound with collagen-binding synthetic oligopeptide: a clinical and histologic study in humans [J]. J Periodontol, 2011, 82(3): 471-480.

[110] Buser D, Mericske-Stern R, Bernard J P, et al. Long-term evaluation of non-submerged ITI implants. Part 1: 8-year life table analysis of a prospective multi-center study with 2359 implants [J]. Clin Oral Implants Res, 1997, 8(3): 161-172.

[111] Albrektsson T, Zarb G, Worthington P, et al. The long-term efficacy of currently used dental implants: a review and proposed criteria of success [J]. Int J Oral Maxillofac Implants, 1986, 1(1): 11-25.

[112] Karoussis I K, Bragger U, Salvi G E, et al. Effect of implant design on survival and success rates of titanium oral implants: a 10-year prospective cohort study of the ITI Dental Implant System [J]. Clin Oral Implants Res, 2004, 15(1): 8-17.

[113] Kang M H, Jung U W, Cho K S, et al. Retrospective radiographic observational study of 1692 Straumann tissue-level dental implants over 10 years. II. Marginal bone stability [J]. Clin Implant Dent Relat Res, 2018, 20(5): 875-881.

[114] Meredith N. Assessment of implant stability as a prognostic determinant [J]. Int J Prosthodont, 1998, 11(5): 491-501.

[115] Dos Santos M V, Elias C N, Cavalcanti Lima J H. The effects of superficial roughness and design on the primary stability of dental implants [J]. Clin Implant Dent Relat Res, 2011, 13(3): 215-223.

[116] Atsumi M, Park S H, Wang H L. Methods used to assess implant stability: current status [J]. Int J Oral Maxillofac Implants, 2007, 22(5): 743-754.

[117] Beer A, Gahleitner A, Holm A, et al. Correlation of insertion torques with bone mineral density from dental quantitative CT in the mandible [J]. Clin Oral Implants Res, 2003, 14(5): 616-620.

[118] Turkyilmaz I, Tumer C, Ozbek E N, et al. Relations between the bone density values from computerized tomography, and implant stability parameters: a clinical study of 230 regular platform implants [J]. J Clin Periodontol, 2007, 34(8): 716-722.

[119] Alsaadi G, Quirynen M, Michiels K, et al. A biomechanical assessment of the relation between the oral implant stability at insertion and subjective bone quality assessment [J]. J Clin Periodontol, 2007, 34(4): 359-366.

[120] Akca K, Chang T L, Tekdemir I, et al. Biomechanical aspects of initial intraosseous stability and implant design: a quantitative micro-morphometric analysis [J]. Clin Oral Implants Res, 2006, 17(4): 465-472.

[121] Jemt T, Lekholm U. Oral implant treatment in posterior partially edentulous jaws: a 5-year follow-up report [J]. Int J Oral Maxillofac Implants, 1993, 8(6): 635-640.

[122] Roos J, Sennerby L, Lekholm U, et al. A qualitative and quantitative method for evaluating implant success: a 5-year retrospective analysis of the Branemark implant [J]. Int J Oral Maxillofac Implants, 1997, 12(4): 504-514.

[123] Albrektsson T O, Johansson C B, Sennerby L. Biological aspects of implant dentistry: osseointegration [J]. Periodontol 2000, 1994, 4: 58-73.

[124] Smith D E, Zarb G A. Criteria for success of osseointegrated endosseous implants [J]. J Prosthet Dent, 1989, 62(5): 567-572.

[125] Tarnow D P, Magner A W, Fletcher P. The effect of the distance from the contact point to the crest of bone on the presence or absence of the interproximal dental papilla [J]. J Periodontol, 1992, 63(12): 995-996.

[126] Choquet V, Hermans M, Adriaenssens P, et al. Clinical and radiographic evaluation of the papilla level adjacent to single-tooth dental implants. A retrospective study in the maxillary anterior region [J]. J Periodontol, 2001, 72(10): 1364-1371.

[127] Tarnow D, Elian N, Fletcher P, et al. Vertical distance from the crest of bone to the height of the interproximal papilla between adjacent implants [J]. J Periodontol, 2003, 74(12): 1785-1788.

[128] Bahat O, Sullivan R M. Parameters for successful implant integration revisited part II: algorithm for immediate loading diagnostic factors [J]. Clin Implant Dent Relat Res, 2010, 12 Suppl 1: 13-22.

[129] Caton J G, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification [J]. J Periodontol, 2018, 89 Suppl 1: 1-8.

[130] Berglundh T, Armitage G, Araujo M G, et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions [J]. J Clin Periodontol, 2018, 45 Suppl 20: 286-291.

[131] Furhauser R, Florescu D, Benesch T, et al. Evaluation of soft tissue around single-tooth implant crowns: the pink esthetic score [J]. Clin Oral Implants Res, 2005, 16(6): 639-644.

[132] Belser U C, Grutter L, Vailati F, et al. Outcome evaluation of early placed maxillary anterior single-tooth implants using objective esthetic criteria: a cross-sectional, retrospective study in 45 patients with a 2- to 4-year follow-up using pink and white esthetic scores [J]. J Periodontol, 2009, 80(1): 140-151.

[133] Haag D G, Peres K G, Balasubramanian M, et al. Oral Conditions and Health-Related Quality of Life: A Systematic Review [J]. J Dent Res, 2017, 96(8): 864-874.

[134] Fuller J, Donos N, Suvan J, et al. Association of oral health-related quality of life measures with aggressive and chronic periodontitis [J]. J Periodontal Res, 2020, 55(4): 574-580.

[135] Koga S, Ogino Y, Fujikawa N, et al. Oral health-related quality of life and oral hygiene condition in patients with maxillofacial defects: A retrospective analysis [J]. J Prosthodont Res, 2020, 64(4): 397-400.

[136] Ming Y, Hsu S W, Yen Y Y, et al. Association of oral health-related quality of life and Alzheimer disease: A systematic review [J]. J Prosthet Dent, 2020, 124(2): 168-175.

[137] Schmalz G, Patschan S, Patschan D, et al. Oral-Health-Related Quality of Life in Adult Patients with Rheumatic Diseases-A Systematic Review [J]. J Clin Med, 2020, 9(4): 1172

[138] Zucoloto M L, Maroco J, Campos J A. Impact of oral health on health-related quality of life: a cross-sectional study [J]. BMC Oral Health, 2016, 16(1): 55.

[139] Zhang L, Lyu C, Shang Z, et al. Quality of Life of Implant-Supported Overdenture and Conventional Complete Denture in Restoring the Edentulous Mandible: A Systematic Review [J]. Implant Dent, 2017, 26(6): 945-950.

[140] Montero J, Dolz J, Silvestre F J, et al. Changes in oral health-related quality of life after three different strategies of implant therapy: a clinical trial [J]. Odontology, 2019, 107(3): 383-392.

[141] Neelakantan P, Liu P, Dummer P M H, et al. Oral health-related quality of life (OHRQoL) before and after endodontic treatment: a systematic review [J]. Clin Oral Investig, 2020, 24(1): 25-36.

[142] Slade G D. Derivation and validation of a short-form oral health impact profile [J]. Community Dent Oral Epidemiol, 1997, 25(4): 284-290.

[143] Adamo D, Pecoraro G, Fortuna G, et al. Assessment of oral health-related quality of life, measured by OHIP-14 and GOHAI, and psychological profiling in burning mouth syndrome: A case-control clinical study [J]. J Oral Rehabil, 2020, 47(1): 42-52.

[144] Saxena A, Nagarajappa R, Naik D, et al. Assessing the effect of oral diseases on oral health related quality of life of institutionalized elderly using Oral Health Impact Profile (OHIP-14) questionnaire: a pilot study [J]. Rocz Panstw Zakl Hig, 2020, 71(3): 349-353.

[145] Andiappan M, Gao W, Bernabe E, et al. Malocclusion, orthodontic treatment, and the Oral Health Impact Profile (OHIP-14): Systematic review and meta-analysis [J]. Angle Orthod, 2015, 85(3): 493-500.

[146] Wasacz K, Pac A, Darczuk D, et al. Validation of a modified Oral Health Impact Profile scale (OHIP-14) in patients with oral mucosa lesions or periodontal disease [J]. Dent Med Probl, 2019, 56(3): 231-237.

[147] Liu B C, Lee I C, Lo L J, et al. Investigate the oral health impact and quality of life on patients with malocclusion of different treatment needs [J]. Biomed J, 2019, 42(6): 422-429.

[148] Topcu A O, Yamalik N, Guncu G N, et al. Implant-Site Related and Patient-Based Factors With the Potential to Impact Patients' Satisfaction, Quality of Life Measures and Perceptions Toward Dental Implant Treatment [J]. Implant Dent, 2017, 26(4): 581-591.

[149] MA E L, Elgamal M, Mohammed Askar O, et al. Patient satisfaction and oral health-related quality of life (OHRQoL) of conventional denture, fixed prosthesis and milled bar overdenture for All-on-4 implant rehabilitation. A crossover study [J]. Clin Oral Implants Res, 2019, 30(11): 1107-1117.

[150] Mumcu E, Dayan S C, Genceli E, et al. Comparison of four-implant-retained overdentures and implant-supported fixed prostheses using the All-on-4 concept in the maxilla in terms of patient satisfaction, quality of life, and marginal bone loss: a 2-year retrospective study [J]. Quintessence Int, 2020, 51(5): 388-396.

[151] Roumani T, Oulis C J, Papagiannopoulou V, et al. Validation of a Greek version of the oral health impact profile (OHIP-14) in adolescents [J]. Eur Arch Paediatr Dent, 2010, 11(5): 247-252.

[152] Ravaghi V, Farrahi-Avval N, Locker D, et al. Validation of the Persian short version of the Oral Health Impact Profile (OHIP-14) [J]. Oral Health Prev Dent, 2010, 8(3): 229-235.

[153] Gera A, Cattaneo P M, Cornelis M A. A Danish version of the oral health impact profile-14 (OHIP-14): translation and cross-cultural adaptation [J]. BMC Oral Health, 2020, 20(1): 254.

[154] Hagglin C, Berggren U, Hakeberg M, et al. Evaluation of a Swedish version of the OHIP-14 among patients in general and specialist dental care [J]. Swed Dent J, 2007, 31(2): 91-101.

[155] 辛蔚妮, 凌均棨. 口腔健康影响程度量表的验证研究 [J]. 中华口腔医学杂志, 2006, 04): 242-245.

[156] Salvi G E, Monje A, Tomasi C. Long-term biological complications of dental implants placed either in pristine or in augmented sites: A systematic review and meta-analysis [J]. Clin Oral Implants Res, 2018, 29 Suppl 16: 294-310.

[157] Crespi R, Toti P, Covani U, et al. Bone Assessment in Grafted and Ungrafted Sockets After Dental Implant Placement: A 10-year Follow-up Study [J]. Int J Oral Maxillofac Implants, 2020, 35(3): 576-584.

[158] Marconcini S, Giammarinaro E, Derchi G, et al. Clinical outcomes of implants placed in ridge-preserved versus nonpreserved sites: A 4-year randomized clinical trial [J]. Clin Implant Dent Relat Res, 2018, 20(6): 906-914.

[159] Tabrizi R, Mohajerani H, Ardalani B, et al. Does preservation of the socket decrease marginal bone loss in the mandible after extraction of first molars? [J]. Br J Oral Maxillofac Surg, 2019, 57(9): 886-890.

[160] Wu I H, Bakhshalian N, Galaustian R, et al. Retrospective Analysis of the Outcome of Ridge Preservation with Anorganic Bovine Bone Mineral: Marginal Bone Level at Implants Placed Following Healing of Grafted Extraction Sockets [J]. Int J Periodontics Restorative Dent, 2019, 39(1): 131-140.

[161] 毕小成, 危伊萍, 胡文杰, 等. 罹患重度牙周病变磨牙拔牙后位点保存与自然愈合后种植治疗效果对比研究 [J]. 中国实用口腔科杂志, 2017, 10(10): 598-604.

[162] Zhou X, Yang J, Wu L, et al. Evaluation of the Effect of Implants Placed in Preserved Sockets Versus Fresh Sockets on Tissue Preservation and Esthetics: A Meta-analysis and Systematic Review [J]. J Evid Based Dent Pract, 2019, 19(4): 101336.

[163] Tallarico M, Xhanari E, Pisano M, et al. Single post-extractive ultra-wide 7 mm-diameter implants versus implants placed in molar healed sites after socket preservation for molar replacement: 6-month post-loading results from a randomised controlled trial [J]. Eur J Oral Implantol, 2016, 9(3): 263-275.

[164] Summers R B. A new concept in maxillary implant surgery: the osteotome technique [J]. Compendium, 1994, 15(2): 152, 4-6, 8 passim; quiz 62.

[165] Mohan N, Wolf J, Dym H. Maxillary sinus augmentation [J]. Dent Clin North Am, 2015, 59(2): 375-388.

[166] Bhalla N, Dym H. Update on Maxillary Sinus Augmentation [J]. Dent Clin North Am, 2021, 65(1): 197-210.

[167] Guarnieri R, Savio L, Bermonds A, et al. Implants with a Laser-microgrooved Collar Placed in Grafted Posterior Maxillary Extraction Sockets and in Crestally Grafted Sinuses: a 5-Year Multicentre Retrospective Study [J]. J Oral Maxillofac Res, 2020, 11(4): e2.

[168] Sun H Y, Jiang H, Du M Q, et al. The Prevalence and Associated Factors of Periodontal Disease among 35 to 44-year-old Chinese Adults in the 4th National Oral Health Survey [J]. Chin J Dent Res, 2018, 21(4): 241-247.

[169] Nissen K J, Starch-Jensen T. Maxillary Sinus Floor Augmentation With Autogenous Bone Graft From the Ascending Mandibular Ramus [J]. Implant Dent, 2019, 28(1): 46-53.

[170] Rasperini G, Canullo L, Dellavia C, et al. Socket grafting in the posterior maxilla reduces the need for sinus augmentation [J]. Int J Periodontics Restorative Dent, 2010, 30(3): 265-273.

[171] Mazza J E, Newman M G, Sims T N. Clinical and antimicrobial effect of stannous fluoride on periodontitis [J]. J Clin Periodontol, 1981, 8(3): 203-212.

[172] Lundgren S, Cricchio G, Hallman M, et al. Sinus floor elevation procedures to enable implant placement and integration: techniques, biological aspects and clinical outcomes [J]. Periodontol 2000, 2017, 73(1): 103-120.

[173] Fiorellini J P, Howell T H, Cochran D, et al. Randomized study evaluating recombinant human bone morphogenetic protein-2 for extraction socket augmentation [J]. J Periodontol, 2005, 76(4): 605-613.

[174] Block M S. The Processing of Xenografts Will Result in Different Clinical Responses [J]. J Oral Maxillofac Surg, 2019, 77(4): 690-697.

[175] Majzoub J, Ravida A, Starch-Jensen T, et al. The Influence of Different Grafting Materials on Alveolar Ridge Preservation: a Systematic Review [J]. J Oral Maxillofac Res, 2019, 10(3): e6.

[176] Azangookhiavi H, Ghodsi S, Jalil F, et al. Comparison of the Efficacy of Platelet-Rich Fibrin and Bone Allograft for Alveolar Ridge Preservation after Tooth Extraction: A Clinical Trial [J]. Front Dent, 2020, 17(1): 1-6.

[177] Kim M J, Cha J K, Paeng K W, et al. Immediate versus delayed application of bone morphogenetic protein-2 solution in damaged extraction sockets: a preclinical in vivo investigation [J]. Clin Oral Investig, 2021, 25(1): 275-282.

[178] Saito H, Couso-Queiruga E, Shiau H J, et al. Evaluation of poly lactic-co-glycolic acid-coated beta-tricalcium phosphate for alveolar ridge preservation: A multicenter randomized controlled trial [J]. J Periodontol, 2020

[179] da Silva H F, Goulart D R, Sverzut A T, et al. Comparison of two anorganic bovine bone in maxillary sinus lift: a split-mouth study with clinical, radiographical, and histomorphometrical analysis [J]. Int J Implant Dent, 2020, 6(1): 17.

[180] Aludden H C, Mordenfeld A, Hallman M, et al. Lateral ridge augmentation with Bio-Oss alone or Bio-Oss mixed with particulate autogenous bone graft: a systematic review [J]. Int J Oral Maxillofac Surg, 2017, 46(8): 1030-1038.

[181] Astolfi V, Gomez-Menchero A, Rios-Santos J V, et al. Influence of Removing or Leaving the Prosthesis after Regenerative Surgery in Peri-Implant Defects: Retrospective Study: 32 Clinical Cases with 2 to 8 Years of Follow-Up [J]. Int J Environ Res Public Health, 2021, 18(2): 645

[182] 徐涛, 胡文杰, 毕小成, 等. 针对罹患重度牙周病变磨牙实施微创拔牙和位点保存术的初步探索(附1例报告) [J]. 中国实用口腔科杂志, 2018, 11(01): 37-43.

[183] Tomasi C, Donati M, Cecchinato D, et al. Effect of socket grafting with deproteinized bone mineral: An RCT on dimensional alterations after 6 months [J]. Clin Oral Implants Res, 2018, 29(5): 435-442.

[184] Maiorana C, Poli P P, Deflorian M, et al. Alveolar socket preservation with demineralised bovine bone mineral and a collagen matrix [J]. J Periodontal Implant Sci, 2017, 47(4): 194-210.

[185] Debel M, Toma S, Vandenberghe B, et al. Alveolar ridge dimensional changes after two socket sealing techniques. A pilot randomized clinical trial [J]. Clin Oral Investig, 2021, 25(3): 1235-1243.

[186] Jensen T, Schou S, Stavropoulos A, et al. Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft: a systematic review [J]. Clin Oral Implants Res, 2012, 23(3): 263-273.

[187] Barone A, Toti P, Quaranta A, et al. Clinical and Histological changes after ridge preservation with two xenografts: preliminary results from a multicentre randomized controlled clinical trial [J]. J Clin Periodontol, 2017, 44(2): 204-214.

[188] Barone A, Aldini N N, Fini M, et al. Xenograft versus extraction alone for ridge preservation after tooth removal: a clinical and histomorphometric study [J]. J Periodontol, 2008, 79(8): 1370-1377.

[189] Iasella J M, Greenwell H, Miller R L, et al. Ridge preservation with freeze-dried bone allograft and a collagen membrane compared to extraction alone for implant site development: a clinical and histologic study in humans [J]. J Periodontol, 2003, 74(7): 990-999.

[190] Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with Bio-Oss. An experimental study in the dog [J]. Clin Oral Implants Res, 1997, 8(2): 117-124.

[191] Mombelli A, Marxer M, Gaberthuel T, et al. The microbiota of osseointegrated implants in patients with a history of periodontal disease [J]. J Clin Periodontol, 1995, 22(2): 124-130.

[192] Cho-Yan Lee J, Mattheos N, Nixon K C, et al. Residual periodontal pockets are a risk indicator for peri-implantitis in patients treated for periodontitis [J]. Clin Oral Implants Res, 2012, 23(3): 325-333.

[193] Rokaya D, Srimaneepong V, Wisitrasameewon W, et al. Peri-implantitis Update: Risk Indicators, Diagnosis, and Treatment [J]. Eur J Dent, 2020, 14(4): 672-682.

[194] Pjetursson B E, Helbling C, Weber H P, et al. Peri-implantitis susceptibility as it relates to periodontal therapy and supportive care [J]. Clin Oral Implants Res, 2012, 23(7): 888-894.

[195] Graetz C, El-Sayed K F, Geiken A, et al. Effect of periodontitis history on implant success: a long-term evaluation during supportive periodontal therapy in a university setting [J]. Clin Oral Investig, 2018, 22(1): 235-244.

[196] Tan W C, Ong M M, Lang N P. Influence of maintenance care in periodontally susceptible and non-susceptible subjects following implant therapy [J]. Clin Oral Implants Res, 2017, 28(4): 491-494.

[197] Zangrando M S, Damante C A, Sant'Ana A C, et al. Long-term evaluation of periodontal parameters and implant outcomes in periodontally compromised patients: a systematic review [J]. J Periodontol, 2015, 86(2): 201-221.

[198] Oh T J, Yoon J, Misch C E, et al. The causes of early implant bone loss: myth or science? [J]. J Periodontol, 2002, 73(3): 322-333.

[199] Stacchi C, Andolsek F, Berton F, et al. Intraoperative Complications During Sinus Floor Elevation with Lateral Approach: A Systematic Review [J]. Int J Oral Maxillofac Implants, 2017, 32(3): e107-e118.

[200] Thoma D S, Zeltner M, Husler J, et al. EAO Supplement Working Group 4 - EAO CC 2015 Short implants versus sinus lifting with longer implants to restore the posterior maxilla: a systematic review [J]. Clin Oral Implants Res, 2015, 26 Suppl 11: 154-169.

[201] Testori T, Weinstein T, Taschieri S, et al. Risk factors in lateral window sinus elevation surgery [J]. Periodontol 2000, 2019, 81(1): 91-123.

分类号:

 R781.4    

馆藏位置:

 医临时馆    

开放日期:

 2024-04-06    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式