- 无标题文档
查看论文信息

论文题名(中文):

 开放视野远距离光学读写装置对近视控制的潜在价值探索    

作者:

 马路    

学号:

 S1911210421    

论文语种:

 chi    

学科名称:

 医学 - 医学技术 - 眼视光学    

学生类型:

 硕士    

学校:

 北京大学医学部    

院系:

 第二临床医学院    

专业:

 眼科学     

第一导师姓名:

 王凯    

论文完成日期:

 2022-02-10    

论文答辩日期:

 2022-05-13    

论文题名(外文):

 Exploration of the Potential Value of Optical Homework Projector in myopia Control    

关键词(中文):

 近视防控 ; 调节误差 ; 调节微波动 ; 黄斑中心凹下脉络膜厚度 ; 脉络膜容积 ; 脉络膜毛细血管血流空隙占比 ; 近距离工作 ; 光照    

关键词(外文):

 myopia control ; accommodative error ; microfluctuations ; subfoveal choroidal thickness ; choroidal volume ; choriocapillaris flow void percentage ; near work ; illumination    

论文文摘(中文):

第一部分:使用开放视野远距离光学投射读写装置对青少年儿童调节反应和脉络膜的影响

目的:比较青少年儿童在使用开放视野远距离光学投射读写装置(optical homework projector, OHP)和常规近距离两种读写模式下调节反应和脉络膜的差异,并进一步探究OHP在近视防控领域的潜在作用。

方法:纳入2020年10月至2021年10月前往北京大学人民医院眼视光中心就诊的35例青少年儿童。本研究采用自身前后对照,分为调节和脉络膜两个部分。使用开放视野红外自动验光仪记录受试者在戴镜足矫并使用OHP、戴+0.50D欠矫眼镜并使用OHP,33cm处戴镜足矫、33cm处戴+0.50D欠矫眼镜四种状态下连续注视视标3分钟内的调节反应,比较四种情况下的调节误差和调节微波动,选取调节误差和调节微波动最小的方式进行脉络膜部分的研究。使用SD-OCT/OCTA分别在试验开始前、受试者完成任务1(调节误差和调节微波动最小的方式:戴+0.50D欠矫眼镜并使用OHP阅读30分钟),完成任务2(真实世界中阅读方式:近距离足矫阅读30分钟)之后进行全面的脉络膜评估,观察的指标包括黄斑中心凹下脉络膜厚度(SFChT)、脉络膜容积(CV)和脉络膜毛细血管血流空隙占比(FV%)。

结果:根据调节部分的测量结果,受试者在戴镜足矫并使用OHP时表现出调节超前(-0.81±0.27D, p<0.001)和最小的调节微波动(0.13±0.04, p<0.001),所以选取此种方式进行脉络膜部分的研究。与基线值比较,在完成任务1后,中心凹下脉络膜厚度、脉络膜容积和脉络膜毛细血管血流空隙变化分别为12.90±4.71μm, 0.24±0.21 mm3和-0.14%±3.66%;在完成任务2后,相应指标的变化分别为-5.93±7.48μm, -0.14±0.22 mm3和 1.59%±2.92%,且这三组指标的变化量在两个任务之间有显著性差异(三种情况下P<0.001)。     

结论:研究表明使用OHP对青少年儿童调节功能和脉络膜的积极影响。这些发现表明OHP或许具有减缓近视进展的潜在价值。

第二部分:青少年儿童近距离用眼习惯的临床研究

目的:基于观察到的青少年儿童在使用OHP和近距离阅读时调节和脉络膜部分不同的变化,探索两种用眼习惯下产生普遍性个体差异的真实世界客观原因。

方法:选取2020年10月至2021年10月前往北京大学人民医院眼视光中心就诊的596名7-15岁青少年儿童。在所有患者完成睫状肌麻痹验光和复验后发放问卷。采用自行设计的《青少年儿童眼健康情况及近距离读写情况调查问卷》,以电子问卷和纸质问卷两种形式发放并收集数据。问卷包括青少年儿童基本信息、眼部屈光状态、近距离读写习惯、家庭光环境情况四个方面的20项问题。收集的数据经过规格化和数量化处理后用SPSS 25.0进行相关性分析,P<0.05为差异有统计学意义。

结果:将睫状肌麻痹验光后屈光度高于-0.50D的情况定义为近视,调查结果显示高达69.92%的青少年儿童患有近视。一年级至六年级儿童的近视患病率分别为:69.85%,57.89%,66.80%,70.06%,76.07%,75.51%。阅读距离<20cm,具有不良读写姿势的占比分别为23.83%和78.19%。儿童在读写时只开吊灯、只开台灯、吊灯和台灯都开的家庭比例分别为47.48%、6.04%和46.48%。此外,81.82%的青少年儿童在近距离读写中感受到了不同程度的视疲劳。双眼屈光度差异与照明方式、阅读姿势、阅读距离和视疲劳之间存在相关性(r=-0.277,P=0.021;r=0.345,P<0.001;r=-0.11,P=0.005;r=0.16,P<0.001)。

结论:青少年儿童在近距离读写过程中普遍存在读写习惯不良、阅读距离较近以及照明环境较暗的问题。使用OHP可以有效解决上述问题,因此从宏观客观角度上可以支持使用OHP阅读与常规近距离阅读之后的差异性反应。

 

文摘(外文):

Part 1: Influence of a Novel Optical Homework Projector (OHP) on Accommodation and Choroidal Response in Young Children

Objective This study investigated whether the accommodation and choroidal changes obtained with a novel invented optical homework projector (OHP) in young children differed from those obtained under habitual near-work distances, and explored the potential role of OHP in myopia control.

Methods A total of 35 children aged 8–13 years admitted to the optometry Center of the Peking University People’s Hospital from October 2020 to October 2021 participated in this study. This study was a self-control design and composed of two parts, accommodative part and choroidal part. Sustained accommodative response (AR)  within 3 min while focusing on an accommodative visual target via the OHP with full-correction (PF), via the OHP with +0.50 D under-correction (PU), at 33 cm with full-correction (NF), and at 33 cm with +0.50 D under-correction (NU) were measured with an open-field infrared autorefractor, then accommodative error and microfluctuations under these four viewing conditions were compared, and the condition with the least accommodative lag and microfluctuations was chosen for further evaluation of choroidal changes. Participants also underwent a comprehensive choroidal assessment by spectral domain optical coherence tomography and optical coherence tomography angiography, including measurements of subfoveal choroidal thickness (SFChT), choroidal volume (CV) and choriocapillaris flow void percentage (FV%) at baseline, after task1 (the reading mode with the least accommodative error and the accommodative microfluctuations: reading via PU), and after task2 (reading in the real world: near-distance reading) for a sustained 30-min period.

Results PU was chosen as the intervention for reading in the second experimental session since participants showed accommodative leads (-0.81±0.27D, p<0.001) and the least microfluctuations (0.13±0.04, p < 0.001) under this viewing condition. SFChT, CV and FV% increased by 12.90±4.71μm, 0.24±0.21mm3 and -0.14%±3.66% after task 1, respectively, and -5.93±7.48μm, -0.14±0.22mm3 and 1.59%±2.92% after task 2, respectively. All parameters showed significant differences between the two tasks (p < 0.001 for all).

Conclusions This study highlights the positive influence of the OHP on accommodation and choroid in children’s eyes. These findings suggest that the OHP may have the potential to slow myopia progression in the future.

 

Part 2: A clinical study on near-work viewing habits of young children

Objective To explore the propriate reasons for the opposite changes observed when viewing via the OHP and when viewing under near-work distances on accommodation and choroidal response in Children from the perspective of real environment.

Methods A total of 596 children aged 7–15 years admitted to the optometry Center of the Peking University People’s Hospital from October 2020 to October 2021 were recruited in this study. All participants were given questionnaire after assessments of refraction both at the pupil was dilated and then returned to the normal size. Self-designed questionnaire on ocular health and near-distances reading and writing habits of children was issued in paper or electronic forms. The questionnaire included 20 questions on four aspects: basic information of children, refractive state of eyes, near-work reading and writing habits, and family light environment. The collected data was used for correlation analysis after being normalized and quantified, and statistical significance was set at P<0.05.

Results If we defined the refractive error ≤-0.50D after cycloplegic refraction as myopia, then the percentage of myopic children was up to 69.92% according to our results, with the prevalence of myopia in children from grade one to six was 69.85%, 57.89%, 66.80%, 70.06%, 76.07%, 75.51%, respectively. The children with near distances less than 20 cm and those had poor posture when read and write accounted for 23.83% and 78.19% respectively. The proportion of families with only chandelier, only table lamp, both chandelier and table lamp on when children read and write were 47.48%, 6.04% and 46.48% respectively. In addition, 81.82% children reported different degrees of eye fatigue during near-distances reading and writing. The interocular differences in refractive error was correlated with lighting, reading posture, reading distance and eye fatigue (r=-0.277,P=0.021;r=0.345,P<0.001;r=-0.11,P=0.005;r=0.16,P<0.001).

Conclusions Poor reading and writing habits, short reading distances and poor illumination are common risk factors for myopia when children do near-distances reading and writing. The use of OHP eliminates these risk factors induced by near work. Thus, it can be used to explain the different changes of accommodative and choroidal response observed when children use the OHP and when they do near-distances viewing.

 

论文目录:
第一章 文献综述 1
1.1 问题的提出 1
1.2 国内外研究现状 2
1.2.1高强度的近距离工作时带来的相关问题 2
1.2.2 当前控制近视进展的主要理论和相关手段 6
1.2.3目前用于评估近视控制效果的方法 11
1.2.4 小结 13
1.3 论文的主要内容 14
第二章 使用开放视野远距离光学投射读写装置对青少年儿童调节反应和脉络膜的响 15
2.1研究内容 15
2.1.1 研究对象 15
2.1.2 研究方法 15
2.1.3 试验步骤 17
2.1.4 统计学方法 22
2.2结果 23
2.2.1 本研究受试者信息 23
2.2.2 调节部分结果 23
2.2.3 脉络膜部分结果 26
2.2.4 各项指标间的相关性分析 31
2.3讨论 31
2.3.1 使用OHP对人眼调节功能的影响 31
2.3.2 使用OHP对人眼脉络膜的影响 32
第三章 青少年儿童近距离用眼习惯的临床研究 35
3.1研究内容 35
3.1.1 研究对象 35
3.1.2 研究方法 35
3.1.3 统计学方法 36
3.2调查问卷结果 37
3.2.1 本研究受试者基本信息 37
3.2.2 青少年儿童近距离阅读习惯分析 37
3.2.3 青少年儿童不良读写习惯与双眼屈光度差异的相关性分析 39
3.3 讨论 39
第四章 研究存在的问题 42
4.1第一部分 42
4.2 第二部分 42
第五章 结论和展望 43
5.1 结论 43
5.2 展望 43
参考文献 44
缩写释义 55
附录 56
开放视野远距离光学读写装置 56
致 谢 57
北京大学学位论文原创性声明和使用授权说明 59
个人简历、在学期间发表的学术论文与研究成果 60

参考文献:

[1] WANG J, LI Y, MUSCH D C, et al. Progression of Myopia in School-Aged Children After COVID-19 Home Confinement [J]. Jama Ophthalmol, 2021, 139(3): 293-300.

[2] P?RSSINEN O, KAUPPINEN M. Risk factors for high myopia: a 22-year follow-up study from childhood to adulthood [J]. Acta Ophthalmol, 2019, 97(5): 510-8.

[3] RAMAMURTHY D, CHUA S Y L, SAW S M. A review of environmental risk factors for myopia during early life, childhood and adolescence [J]. Clinical and Experimental Optometry, 2015, 98(6): 497-506.

[4] HUANG H M, CHANG D S T, WU P C. The Association between Near Work Activities and Myopia in Children-A Systematic Review and Meta-Analysis [J]. Plos One, 2015, 10(10):

[5] HARTWIG A, GOWEN E, CHARMAN W N, et al. Working distance and eye and head movements during near work in myopes and non-myopes [J]. Clin Exp Optom, 2011, 94(6): 536-44.

[6] JONAS J B, ANG M, CHO P, et al. IMI Prevention of Myopia and Its Progression [J]. Invest Ophthalmol Vis Sci, 2021, 62(5): 6.

[7] WU P C, CHEN C T, LIN K K, et al. Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial [J]. Ophthalmology, 2018, 125(8): 1239-50.

[8] ZADNIK K, MUTTI D O. Outdoor Activity Protects Against Childhood Myopia-Let the Sun Shine In [J]. JAMA Pediatr, 2019, 173(5): 415-6.

[9] YAO L, QI L S, WANG X F, et al. Refractive Change and Incidence of Myopia Among A Group of Highly Selected Senior High School Students in China: A Prospective Study in An Aviation Cadet Prerecruitment Class [J]. Invest Ophthalmol Vis Sci, 2019, 60(5): 1344-52.

[10] LI S M, LI S Y, KANG M T, et al. Near Work Related Parameters and Myopia in Chinese Children: the Anyang Childhood Eye Study [J]. Plos One, 2015, 10(8): e0134514.

[11] MORGAN I G, ROSE K A. Myopia: is the nature-nurture debate finally over? [J]. Clin Exp Optom, 2019, 102(1): 3-17.

[12] MCBRIEN N A, BARNES D A. A review and evaluation of theories of refractive error development [J]. Ophthalmic Physiol Opt, 1984, 4(3): 201-13.

[13] BEZ D, MEGRELI J, BEZ M, et al. Association Between Type of Educational System and Prevalence and Severity of Myopia Among Male Adolescents in Israel [J]. Jama Ophthalmol, 2019, 137(8): 887-93.

[14] DE JONG P. Myopia: its historical contexts [J]. Br J Ophthalmol, 2018, 102(8): 1021-7.

[15] SCHAEFFEL F, FELDKAEMPER M. Animal models in myopia research [J]. Clin Exp Optom, 2015, 98(6): 507-17.

[16] WU P C, HUANG H M, YU H J, et al. Epidemiology of Myopia [J]. Asia Pac J Ophthalmol (Phila), 2016, 5(6): 386-93.

[17] MEDINA A. A model for emmetropization. The effect of corrective lenses [J]. Acta Ophthalmol (Copenh), 1987, 65(5): 565-71.

[18] SCHAEFFEL F, GLASSER A, HOWLAND H C. Accommodation, refractive error and eye growth in chickens [J]. Vision Res, 1988, 28(5): 639-57.

[19] DIETHER S, SCHAEFFEL F. Local changes in eye growth induced by imposed local refractive error despite active accommodation [J]. Vision Res, 1997, 37(6): 659-68.

[20] BENAVENTE-PEREZ A, NOUR A, TROILO D. The effect of simultaneous negative and positive defocus on eye growth and development of refractive state in marmosets [J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6479-87.

[21] SMITH E L, III, HUNG L-F, HUANG J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys [J]. Vision Research, 2009, 49(19): 2386-92.

[22] MORGAN I G, AMBADENIYA M P. Imposed peripheral myopic defocus can prevent the development of lens-induced myopia [J]. Investigative Ophthalmology & Visual ence, 2006, 47(#3328.

[23] DELSHAD S, COLLINS M J, READ S A, et al. The human axial length and choroidal thickness responses to continuous and alternating episodes of myopic and hyperopic blur [J]. Plos One, 2020, 15(12): e0243076.

[24] CHAKRABORTY R, READ S A, COLLINS M J. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes [J]. Exp Eye Res, 2012, 103(47-54.

[25] NTI A N, BERNTSEN D A. Optical changes and visual performance with orthokeratology [J]. Clin Exp Optom, 2020, 103(1): 44-54.

[26] SAW S M, MATSUMURA S, HOANG Q V. Prevention and Management of Myopia and Myopic Pathology [J]. Invest Ophthalmol Vis Sci, 2019, 60(2): 488-99.

[27] LAM C S Y, TANG W C, QI H, et al. Effect of Defocus Incorporated Multiple Segments Spectacle Lens Wear on Visual Function in Myopic Chinese Children [J]. Transl Vis Sci Technol, 2020, 9(9): 11.

[28] KOOMSON N Y, AMEDO A O, OPOKU-BAAH C, et al. Relationship between Reduced Accommodative Lag and Myopia Progression [J]. Optom Vis Sci, 2016, 93(7): 683-91.

[29] 高稳生, 陈子林. 角膜塑形术在近视治疗中的作用机制 [J]. 中国医药科学, 2015, 5(01): 60-2.

[30] PRICE H, ALLEN P M, RADHAKRISHNAN H, et al. The Cambridge Anti-myopia Study: variables associated with myopia progression [J]. Optom Vis Sci, 2013, 90(11): 1274-83.

[31] 龚露, 保金华, 邓军, et al. 近视眼在持续性近距离阅读时周边屈光状态的变化 [J]. 中华眼视光学与视觉科学杂志, 2010, 02): 95-8.

[32] 赵自改, 保金华, 瞿佳. 调节对人眼周边视网膜球性离焦影响 [J]. 中国实用眼科杂志, 2014, 32(10): 1173-7.

[33] CHENG D, WOO G C, DROBE B, et al. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three-year results of a randomized clinical trial [J]. Jama Ophthalmol, 2014, 132(3): 258-64.

[34] NORTON T T, SIEGWART J T, JR. Light levels, refractive development, and myopia--a speculative review [J]. Exp Eye Res, 2013, 114(48-57.

[35] GUGGENHEIM J A, NORTHSTONE K, MCMAHON G, et al. Time outdoors and physical activity as predictors of incident myopia in childhood: a prospective cohort study [J]. Invest Ophthalmol Vis Sci, 2012, 53(6): 2856-65.

[36] ROSE K A, MORGAN I G, IP J, et al. Outdoor activity reduces the prevalence of myopia in children [J]. Ophthalmology, 2008, 115(8): 1279-85.

[37] ASHBY R, OHLENDORF A, SCHAEFFEL F. The effect of ambient illuminance on the development of deprivation myopia in chicks [J]. Invest Ophthalmol Vis Sci, 2009, 50(11): 5348-54.

[38] JIANG L, LONG K, SCHAEFFEL F, et al. Effects of dopaminergic agents on progression of naturally occurring myopia in albino guinea pigs (Cavia porcellus) [J]. Invest Ophthalmol Vis Sci, 2014, 55(11): 7508-19.

[39] SMITH E L, 3RD, HUNG L F, HUANG J. Protective effects of high ambient lighting on the development of form-deprivation myopia in rhesus monkeys [J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 421-8.

[40] COHEN Y, PELEG E, BELKIN M, et al. Ambient illuminance, retinal dopamine release and refractive development in chicks [J]. Exp Eye Res, 2012, 103(33-40.

[41] FELDKAEMPER M, SCHAEFFEL F. An updated view on the role of dopamine in myopia [J]. Experimental Eye Research, 2013, 114(106-19.

[42] HUA W J, JIN J X, WU X Y, et al. Elevated light levels in schools have a protective effect on myopia [J]. Ophthalmic and Physiological Optics, 2015, 35(3): 252-62.

[43] WEN L, CHENG Q, LAN W, et al. An Objective Comparison of Light Intensity and Near-Visual Tasks Between Rural and Urban School Children in China by a Wearable Device Clouclip [J]. Transl Vis Sci Technol, 2019, 8(6): 15.

[44] HOWELL C M, MCCULLOUGH S J, DOYLE L, et al. Reliability and validity of the Actiwatch and Clouclip for measuring illumination in real-world conditions [J]. Ophthalmic Physiol Opt, 2021, 41(5): 1048-59.

[45] READ S A, COLLINS M J, VINCENT S J. Light Exposure and Eye Growth in Childhood [J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6779-87.

[46] WALLINE J J, LINDSLEY K B, VEDULA S S, et al. Interventions to slow progression of myopia in children [J]. Cochrane Database Syst Rev, 2020, 1(1): Cd004916.

[47] DONOVAN L, SANKARIDURG P, HO A, et al. Myopia progression rates in urban children wearing single-vision spectacles [J]. Optom Vis Sci, 2012, 89(1): 27-32.

[48] NORTON T T. Animal Models of Myopia: Learning How Vision Controls the Size of the Eye [J]. Ilar j, 1999, 40(2): 59-77.

[49] CIUFFREDA K J, VASUDEVAN B. Effect of nearwork-induced transient myopia on distance retinal defocus patterns [J]. Optometry, 2010, 81(3): 153-6.

[50] ARUNTHAVARAJA M, VASUDEVAN B, CIUFFREDA K J. Nearwork-induced transient myopia (NITM) following marked and sustained, but interrupted, accommodation at near [J]. Ophthalmic Physiol Opt, 2010, 30(6): 766-75.

[51] FLITCROFT D I. The complex interactions of retinal, optical and environmental factors in myopia aetiology [J]. Prog Retin Eye Res, 2012, 31(6): 622-60.

[52] BLAKEMORE C, CAMPBELL F W. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images [J]. J Physiol, 1969, 203(1): 237-60.

[53] BLAKEMORE C, MUNCEY J P, RIDLEY R M. Stimulus specificity in the human visual system [J]. Vision Res, 1973, 13(10): 1915-31.

[54] CHEN J C, BROWN B, SCHMID K L. Changes in implicit time of the multifocal electroretinogram response following contrast adaptation [J]. Curr Eye Res, 2006, 31(6): 549-56.

[55] YEO A C, ATCHISON D A, LAI N S, et al. Near work-induced contrast adaptation in emmetropic and myopic children [J]. Invest Ophthalmol Vis Sci, 2012, 53(7): 3441-8.

[56] BARTMANN M, SCHAEFFEL F. A simple mechanism for emmetropization without cues from accommodation or colour [J]. Vision Res, 1994, 34(7): 873-6.

[57] SIVAK J G, BARRIE D L, WEERHEIM J A. Bilateral experimental myopia in chicks [J]. Optom Vis Sci, 1989, 66(12): 854-8.

[58] MON-WILLIAMS M, TRESILIAN J R, STRANG N C, et al. Improving vision: neural compensation for optical defocus [J]. Proc Biol Sci, 1998, 265(1390): 71-7.

[59] P?RSSINEN O, KAUPPINEN M. Associations of reading posture, gaze angle and reading distance with myopia and myopic progression [J]. Acta Ophthalmol, 2016, 94(8): 775-9.

[60] WANG Y, BAO J, OU L, et al. Reading behavior of emmetropic schoolchildren in China [J]. Vision Res, 2013, 86(43-51.

[61] GHOSH A, COLLINS M J, READ S A, et al. Axial length changes with shifts of gaze direction in myopes and emmetropes [J]. Invest Ophthalmol Vis Sci, 2012, 53(10): 6465-71.

[62] SHAW A J, COLLINS M J, DAVIS B A, et al. Eyelid pressure: inferences from corneal topographic changes [J]. Cornea, 2009, 28(2): 181-8.

[63] HOOGERHEIDE J, REMPT F, HOOGENBOOM W P. Acquired myopia in young pilots [J]. Ophthalmologica, 1971, 163(4): 209-15.

[64] IRVING E L, CALLENDER M G, SIVAK J G. Inducing ametropias in hatchling chicks by defocus--aperture effects and cylindrical lenses [J]. Vision Res, 1995, 35(9): 1165-74.

[65] SMITH E L, 3RD, HUNG L F, HUANG J. Relative peripheral hyperopic defocus alters central refractive development in infant monkeys [J]. Vision Res, 2009, 49(19): 2386-92.

[66] BENAVENTE-PéREZ A, NOUR A, TROILO D. Axial eye growth and refractive error development can be modified by exposing the peripheral retina to relative myopic or hyperopic defocus [J]. Invest Ophthalmol Vis Sci, 2014, 55(10): 6765-73.

[67] SMITH E L, 3RD. Prentice Award Lecture 2010: A case for peripheral optical treatment strategies for myopia [J]. Optom Vis Sci, 2011, 88(9): 1029-44.

[68] LU Y, LIN Z, WEN L, et al. The Adaptation and Acceptance of Defocus Incorporated Multiple Segment Lens for Chinese Children [J]. Am J Ophthalmol, 2020, 211(207-16.

[69] LAM C S Y, TANG W C, TSE D Y, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial [J]. Br J Ophthalmol, 2020, 104(3): 363-8.

[70] CHO P, CHEUNG S W, EDWARDS M. The longitudinal orthokeratology research in children (LORIC) in Hong Kong: a pilot study on refractive changes and myopic control [J]. Curr Eye Res, 2005, 30(1): 71-80.

[71] SUN Y, XU F, ZHANG T, et al. Correction: Orthokeratology to Control Myopia Progression: A Meta-Analysis [J]. Plos One, 2015, 10(6): e0130646.

[72] SI J K, TANG K, BI H S, et al. Orthokeratology for myopia control: a meta-analysis [J]. Optom Vis Sci, 2015, 92(3): 252-7.

[73] FULK G W, CYERT L A, PARKER D E. A randomized trial of the effect of single-vision vs. bifocal lenses on myopia progression in children with esophoria [J]. Optom Vis Sci, 2000, 77(8): 395-401.

[74] P?RSSINEN O, HEMMINKI E, KLEMETTI A. Effect of spectacle use and accommodation on myopic progression: final results of a three-year randomised clinical trial among schoolchildren [J]. Br J Ophthalmol, 1989, 73(7): 547-51.

[75] LEUNG J T, BROWN B. Progression of myopia in Hong Kong Chinese schoolchildren is slowed by wearing progressive lenses [J]. Optom Vis Sci, 1999, 76(6): 346-54.

[76] ZLOTO O, WYGNANSKI-JAFFE T, FARZAVANDI S K, et al. Current trends among pediatric ophthalmologists to decrease myopia progression-an international perspective [J]. Graefes Arch Clin Exp Ophthalmol, 2018, 256(12): 2457-66.

[77] LOGAN N S, WOLFFSOHN J S. Role of un-correction, under-correction and over-correction of myopia as a strategy for slowing myopic progression [J]. Clin Exp Optom, 2020, 103(2): 133-7.

[78] WILDSOET C F, CHIA A, CHO P, et al. IMI - Interventions Myopia Institute: Interventions for Controlling Myopia Onset and Progression Report [J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M106-M31.

[79] LAM C S, TANG W C, TSE D Y, et al. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial [J]. Br J Ophthalmol, 2014, 98(1): 40-5.

[80] GARCíA DEL VALLE I, ALVAREZ-LORENZO C. Atropine in topical formulations for the management of anterior and posterior segment ocular diseases [J]. Expert Opin Drug Deliv, 2021, 18(9): 1245-60.

[81] VAN A G. On emmetropia and ametropia [J]. Opt Acta (Lond), 1961, 142(Suppl)(1-92.

[82] MCKANNA J A, CASAGRANDE V A. Atropine Affects Lid-Suture Myopia Development [M]//FLEDELIUS H C, ALSBIRK P H, GOLDSCHMIDT E. Third International Conference on Myopia Copenhagen, August 24–27, 1980. Dordrecht; Springer Netherlands. 1981: 187-92.

[83] MCBRIEN N A, MOGHADDAM H O, REEDER A P. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism [J]. Invest Ophthalmol Vis Sci, 1993, 34(1): 205-15.

[84] DUNCAN G, COLLISON D J. Role of the non-neuronal cholinergic system in the eye: a review [J]. Life Sci, 2003, 72(18-19): 2013-9.

[85] ARUMUGAM B, MCBRIEN N A. Muscarinic antagonist control of myopia: evidence for M4 and M1 receptor-based pathways in the inhibition of experimentally-induced axial myopia in the tree shrew [J]. Invest Ophthalmol Vis Sci, 2012, 53(9): 5827-37.

[86] YAM J C, JIANG Y, TANG S M, et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control [J]. Ophthalmology, 2019, 126(1): 113-24.

[87] YAM J C, LI F F, ZHANG X, et al. Two-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 2 Report [J]. Ophthalmology, 2020, 127(7): 910-9.

[88] WANG W Y, CHEN C, CHANG J, et al. Pharmacotherapeutic candidates for myopia: A review [J]. Biomed Pharmacother, 2021, 133(111092.

[89] TAN D T, LAM D S, CHUA W H, et al. One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia [J]. Ophthalmology, 2005, 112(1): 84-91.

[90] SIATKOWSKI R M, COTTER S A, CROCKETT R S, et al. Two-year multicenter, randomized, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia [J]. J aapos, 2008, 12(4): 332-9.

[91] TRIER K, MUNK RIBEL-MADSEN S, CUI D, et al. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study [J]. J Ocul Biol Dis Infor, 2008, 1(2-4): 85-93.

[92] HE M, XIANG F, ZENG Y, et al. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial [J]. Jama, 2015, 314(11): 1142-8.

[93] WU P C, TSAI C L, WU H L, et al. Outdoor activity during class recess reduces myopia onset and progression in school children [J]. Ophthalmology, 2013, 120(5): 1080-5.

[94] LIN Z, VASUDEVAN B, JHANJI V, et al. Near work, outdoor activity, and their association with refractive error [J]. Optom Vis Sci, 2014, 91(4): 376-82.

[95] WU P-C, CHEN C-T, LIN K-K, et al. Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial [J]. Ophthalmology, 2018, 125(8): 1239-50.

[96] 周翔天. 近视研究新热点:户外活动、光照和多巴胺 [J]. 中华眼视光学与视觉科学杂志, 2015, 17(06): 323-5.

[97] MUTTI D O, MARKS A R. Blood levels of vitamin D in teens and young adults with myopia [J]. Optom Vis Sci, 2011, 88(3): 377-82.

[98] KWON J W, CHOI J A, LA T Y. Serum 25-hydroxyvitamin D level is associated with myopia in the Korea national health and nutrition examination survey [J]. Medicine (Baltimore), 2016, 95(46): e5012.

[99] KAROUTA C, ASHBY R S. Correlation between light levels and the development of deprivation myopia [J]. Invest Ophthalmol Vis Sci, 2014, 56(1): 299-309.

[100] LAN W, YANG Z, FELDKAEMPER M, et al. Changes in dopamine and ZENK during suppression of myopia in chicks by intense illuminance [J]. Exp Eye Res, 2016, 145(118-24.

[101] XIONG F, MAO T, LIAO H, et al. Orthokeratology and Low-Intensity Laser Therapy for Slowing the Progression of Myopia in Children [J]. Biomed Res Int, 2021, 2021(8915867.

[102] JIANG Y, ZHU Z, TAN X, et al. Effect of Repeated Low-Level Red-Light Therapy for Myopia Control in Children: A Multicenter Randomized Controlled Trial [J]. Ophthalmology, 2021,

[103] BRENNAN N A, TOUBOUTI Y M, CHENG X, et al. Efficacy in myopia control [J]. Prog Retin Eye Res, 2021, 83(100923.

[104] WOLFFSOHN J S, CALOSSI A, CHO P, et al. Global trends in myopia management attitudes and strategies in clinical practice - 2019 Update [J]. Cont Lens Anterior Eye, 2020, 43(1): 9-17.

[105] TRAN H D M, TRAN Y H, TRAN T D, et al. A Review of Myopia Control with Atropine [J]. J Ocul Pharmacol Ther, 2018, 34(5): 374-9.

[106] KANG P. Optical and pharmacological strategies of myopia control [J]. Clin Exp Optom, 2018, 101(3): 321-32.

[107] BADMUS S A, AJAIYEOBA A I, ADEGBEHINGBE B O, et al. Axial length/corneal radius of curvature ratio and refractive status in an adult Nigerian population [J]. Niger J Clin Pract, 2017, 20(10): 1328-34.

[108] TIDEMAN J W L, POLLING J R, VINGERLING J R, et al. Axial length growth and the risk of developing myopia in European children [J]. Acta Ophthalmol, 2018, 96(3): 301-9.

[109] CSAKY K, FERRIS F, 3RD, CHEW E Y, et al. Report From the NEI/FDA Endpoints Workshop on Age-Related Macular Degeneration and Inherited Retinal Diseases [J]. Invest Ophthalmol Vis Sci, 2017, 58(9): 3456-63.

[110] FLITCROFT D I, HE M, JONAS J B, et al. IMI - Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiologic Studies [J]. Invest Ophthalmol Vis Sci, 2019, 60(3): M20-m30.

[111] BULLIMORE M A, BRENNAN N A. Myopia Control: Why Each Diopter Matters [J]. Optom Vis Sci, 2019, 96(6): 463-5.

[112] WALLINE J J, ROBBOY M W, HILMANTEL G, et al. Food and Drug Administration, American Academy of Ophthalmology, American Academy of Optometry, American Association for Pediatric Ophthalmology and Strabismus, American Optometric Association, American Society of Cataract and Refractive Surgery, and Contact Lens Association of Ophthalmologists Co-Sponsored Workshop: Controlling the Progression of Myopia: Contact Lenses and Future Medical Devices [J]. Eye Contact Lens, 2018, 44(4): 205-11.

[113] MATHIS U, ZIEMSSEN F, SCHAEFFEL F. Effects of a human VEGF antibody (Bevacizumab) on deprivation myopia and choroidal thickness in the chicken [J]. Exp Eye Res, 2014, 127(161-9.

[114] HU W, CRISWELL M H, FONG S L, et al. Differences in the temporal expression of regulatory growth factors during choroidal neovascular development [J]. Exp Eye Res, 2009, 88(1): 79-91.

[115] JOBLING A I, WAN R, GENTLE A, et al. Retinal and choroidal TGF-beta in the tree shrew model of myopia: isoform expression, activation and effects on function [J]. Exp Eye Res, 2009, 88(3): 458-66.

[116] WALLMAN J, WILDSOET C, XU A, et al. Moving the retina: choroidal modulation of refractive state [J]. Vision Res, 1995, 35(1): 37-50.

[117] FITZGERALD M E, WILDSOET C F, REINER A. Temporal relationship of choroidal blood flow and thickness changes during recovery from form deprivation myopia in chicks [J]. Exp Eye Res, 2002, 74(5): 561-70.

[118] LU F, ZHOU X, JIANG L, et al. Axial myopia induced by hyperopic defocus in guinea pigs: A detailed assessment on susceptibility and recovery [J]. Exp Eye Res, 2009, 89(1): 101-8.

[119] HOWLETT M H, MCFADDEN S A. Spectacle lens compensation in the pigmented guinea pig [J]. Vision Res, 2009, 49(2): 219-27.

[120] READ S A, ALONSO-CANEIRO D, VINCENT S J, et al. Longitudinal changes in choroidal thickness and eye growth in childhood [J]. Invest Ophthalmol Vis Sci, 2015, 56(5): 3103-12.

[121] FONTAINE M, GAUCHER D, SAUER A, et al. Choroidal Thickness and Ametropia in Children: A Longitudinal Study [J]. Eur J Ophthalmol, 2017, 27(6): 730-4.

[122] WOODMAN-PIETERSE E C, READ S A, COLLINS M J, et al. Regional changes in choroidal thickness associated with accommodation [J]. Invest Ophthalmol Vis Sci, 2015, 56(11): 6414-22.

[123] CHAKRABORTY R, READ S A, COLLINS M J. Hyperopic defocus and diurnal changes in human choroid and axial length [J]. Optom Vis Sci, 2013, 90(11): 1187-98.

[124] CHIANG S T, PHILLIPS J R, BACKHOUSE S. Effect of retinal image defocus on the thickness of the human choroid [J]. Ophthalmic Physiol Opt, 2015, 35(4): 405-13.

[125] ZHANG Z, ZHOU Y, XIE Z, et al. The effect of topical atropine on the choroidal thickness of healthy children [J]. Sci Rep, 2016, 6(34936.

[126] WANG D, CHUN R K, LIU M, et al. Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren [J]. Plos One, 2016, 11(8): e0161535.

[127] KIM D Y, SILVERMAN R H, CHAN R V, et al. Measurement of choroidal perfusion and thickness following systemic sildenafil (Viagra(?) ) [J]. Acta Ophthalmol, 2013, 91(2): 183-8.

[128] OKAMOTO M, MATSUURA T, OGATA N. Choroidal thickness and choroidal blood flow after intravitreal bevacizumab injection in eyes with central serous chorioretinopathy [J]. Ophthalmic Surg Lasers Imaging Retina, 2015, 46(1): 25-32.

[129] YANG Y S, KOH J W. Choroidal Blood Flow Change in Eyes with High Myopia [J]. Korean J Ophthalmol, 2015, 29(5): 309-14.

[130] WU H, ZHANG G, SHEN M, et al. Assessment of Choroidal Vascularity and Choriocapillaris Blood Perfusion in Anisomyopic Adults by SS-OCT/OCTA [J]. Invest Ophthalmol Vis Sci, 2021, 62(1): 8.

[131] XU A, SUN G, DUAN C, et al. Quantitative Assessment of Three-Dimensional Choroidal Vascularity and Choriocapillaris Flow Signal Voids in Myopic Patients Using SS-OCTA [J]. Diagnostics (Basel), 2021, 11(11):

[132] ZHAO F, ZHANG D, ZHOU Q, et al. Scleral HIF-1α is a prominent regulatory candidate for genetic and environmental interactions in human myopia pathogenesis [J]. EBioMedicine, 2020, 57(102878.

[133] VIRA J, MARCHESE A, SINGH R B, et al. Swept-source optical coherence tomography imaging of the retinochoroid and beyond [J]. Expert Rev Med Devices, 2020, 17(5): 413-26.

[134] KARAKü?üK Y, BEYOGLU A, ??MEZ A. Quantitative assessment of the effect of fasting on macular microcirculation: an optical coherence tomography angiography study [J]. Br J Ophthalmol, 2020, 104(8): 1098-102.

[135] RIVA C E, TITZE P, HERO M, et al. Choroidal blood flow during isometric exercises [J]. Invest Ophthalmol Vis Sci, 1997, 38(11): 2338-43.

[136] SPAIDE R F. Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression [J]. Am J Ophthalmol, 2016, 170(58-67.

[137] TAN C S, LIM L W, CHOW V S, et al. Optical Coherence Tomography Angiography Evaluation of the Parafoveal Vasculature and Its Relationship With Ocular Factors [J]. Invest Ophthalmol Vis Sci, 2016, 57(9): Oct224-34.

[138] WIN-HALL D M, HOUSER J, GLASSER A. Static and Dynamic Accommodation Measured Using the WAM-5500 Autorefractor [J]. Optometry Vision Sci, 2010, 87(11): 873-82.

[139] OSTRIN L A, JNAWALI A, CARKEET A, et al. Twenty-four hour ocular and systemic diurnal rhythms in children [J]. Ophthalmic and Physiological Optics, 2019, 39(5): 358-69.

[140] KINOSHITA T, MITAMURA Y, SHINOMIYA K, et al. Diurnal variations in luminal and stromal areas of choroid in normal eyes [J]. Br J Ophthalmol, 2017, 101(3): 360-4.

[141] READ S A, COLLINS M J, VINCENT S J, et al. Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography [J]. Invest Ophthalmol Vis Sci, 2013, 54(12): 7578-86.

[142] MARGOLIS R, SPAIDE R F. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes [J]. Am J Ophthalmol, 2009, 147(5): 811-5.

[143] FRANK R N, SCHULZ L, ABE K, et al. Temporal variation in diabetic macular edema measured by optical coherence tomography [J]. Ophthalmology, 2004, 111(2): 211-7.

[144] MAHAJAN V N, ACOSTA E. Zernike coefficients from wavefront curvature data [J]. Appl Opt, 2020, 59(22): G120-g8.

[145] ALLEN P, CALCAGNI A, ROBSON A G, et al. Investigating the potential of Zernike polynomials to characterise spatial distribution of macular pigment [J]. Plos One, 2019, 14(5): e0217265.

[146] SU L, JI Y S, TONG N, et al. Quantitative assessment of the retinal microvasculature and choriocapillaris in myopic patients using swept-source optical coherence tomography angiography [J]. Graefes Arch Clin Exp Ophthalmol, 2020, 258(6): 1173-80.

[147] OLVER J M. Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroid [J]. Eye (Lond), 1990, 4 ( Pt 2)(262-72.

[148] DOANE M G. Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink [J]. Am J Ophthalmol, 1980, 89(4): 507-16.

[149] GWIAZDA J, THORN F, BAUER J, et al. Myopic children show insufficient accommodative response to blur [J]. Invest Ophthalmol Vis Sci, 1993, 34(3): 690-4.

[150] ABBOTT M L, SCHMID K L, STRANG N C. Differences in the accommodation stimulus response curves of adult myopes and emmetropes [J]. Ophthalmic Physiol Opt, 1998, 18(1): 13-20.

[151] WILDSOET C F. Active emmetropization--evidence for its existence and ramifications for clinical practice [J]. Ophthalmic Physiol Opt, 1997, 17(4): 279-90.

[152] WEIZHONG L, ZHIKUAN Y, WEN L, et al. A longitudinal study on the relationship between myopia development and near accommodation lag in myopic children [J]. Ophthalmic Physiol Opt, 2008, 28(1): 57-61.

[153] BERNTSEN D A, MUTTI D O, ZADNIK K. The effect of bifocal add on accommodative lag in myopic children with high accommodative lag [J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6104-10.

[154] ALLEN P M, O'LEARY D J. Accommodation functions: co-dependency and relationship to refractive error [J]. Vision Res, 2006, 46(4): 491-505.

[155] ROSENFIELD M, DESAI R, PORTELLO J K. Do progressing myopes show reduced accommodative responses? [J]. Optom Vis Sci, 2002, 79(4): 268-73.

[156] PHILLIPS J R. Monovision slows juvenile myopia progression unilaterally [J]. Br J Ophthalmol, 2005, 89(9): 1196-200.

[157] TOKORO T, KABE S. [Treatment of the myopia and the changes in optical components. Report II. Full-or under-correction of myopia by glasses] [J]. Nippon Ganka Gakkai Zasshi, 1965, 69(2): 140-4.

[158] ONG E, GRICE K, HELD R, et al. Effects of spectacle intervention on the progression of myopia in children [J]. Optom Vis Sci, 1999, 76(6): 363-9.

[159] LIN H, DROBE B, JIN W, et al. Effects of Near Addition Lenses and Prisms on Accommodative Microfluctuations in Chinese Children [J]. Optom Vis Sci, 2016, 93(5): 488-96.

[160] LANGAAS T, RIDDELL P M. Accommodative instability: relationship to progression of early onset myopia [J]. Clinical and Experimental Optometry, 2012, 95(2):

[161] ROBERTS T L, MANNY R E, ANDERSON H A. Impact of Visual Cues on the Magnitude and Variability of the Accommodative Response in Children With Emmetropia and Uncorrected Hyperopia and Adults [J]. Invest Ophthalmol Vis Sci, 2019, 60(5): 1527-37.

[162] ROBERTS T L, STEVENSON S B, BENOIT J S, et al. Blur Detection, Depth of Field, and Accommodation in Emmetropic and Hyperopic Children [J]. Optom Vis Sci, 2018, 95(3): 212-22.

[163] WALLMAN J, WINAWER J. Homeostasis of eye growth and the question of myopia [J]. Neuron, 2004, 43(4): 447-68.

[164] JIANG B C. Integration of a sensory component into the accommodation model reveals differences between emmetropia and late-onset myopia [J]. Invest Ophthalmol Vis Sci, 1997, 38(8): 1511-6.

[165] ROSENFIELD M, ABRAHAM-COHEN J A. Blur sensitivity in myopes [J]. Optom Vis Sci, 1999, 76(5): 303-7.

[166] DAY M, STRANG N C, SEIDEL D, et al. Refractive group differences in accommodation microfluctuations with changing accommodation stimulus [J]. Ophthalmic Physiol Opt, 2006, 26(1): 88-96.

[167] SEIDEL D, GRAY L S, HERON G. Retinotopic accommodation responses in myopia [J]. Invest Ophthalmol Vis Sci, 2003, 44(3): 1035-41.

[168] LAN W, FELDKAEMPER M, SCHAEFFEL F. Bright light induces choroidal thickening in chickens [J]. Optometry Vision Sci, 2013, 90(11): 1199-206.

[169] READ S A, PIETERSE E C, ALONSO-CANEIRO D, et al. Daily morning light therapy is associated with an increase in choroidal thickness in healthy young adults [J]. Sci Rep-Uk, 2018, 8(

[170] WANG M, SCHAEFFEL F, JIANG B, et al. Effects of Light of Different Spectral Composition on Refractive Development and Retinal Dopamine in Chicks [J]. Invest Ophthalmol Vis Sci, 2018, 59(11): 4413-24.

[171] HUEMER K H, GARHOFER G, AGGERMANN T, et al. Role of nitric oxide in choroidal blood flow regulation during light/dark transitions [J]. Invest Ophthalmol Vis Sci, 2007, 48(9): 4215-9.

[172] READ S A, PIETERSE E C, ALONSO-CANEIRO D, et al. Daily morning light therapy is associated with an increase in choroidal thickness in healthy young adults [J]. Sci Rep, 2018, 8(1): 8200.

[173] AHN J, AHN S E, YANG K S, et al. Effects of a high level of illumination before sleep at night on chorioretinal thickness and ocular biometry [J]. Exp Eye Res, 2017, 164(157-67.

[174] HUGHES R P, VINCENT S J, READ S A, et al. Higher order aberrations, refractive error development and myopia control: a review [J]. Clin Exp Optom, 2020, 103(1): 68-85.

[175] ROMASHCHENKO D, ROSéN R, LUNDSTR?M L. Peripheral refraction and higher order aberrations [J]. Clin Exp Optom, 2020, 103(1): 86-94.

[176] BHANDARY S K, DHAKAL R, SANGHAVI V, et al. Ambient light level varies with different locations and environmental conditions: Potential to impact myopia [J]. Plos One, 2021, 16(7): e0254027.

[177] LANCA C, TEO A, VIVAGANDAN A, et al. The Effects of Different Outdoor Environments, Sunglasses and Hats on Light Levels: Implications for Myopia Prevention [J]. Transl Vis Sci Technol, 2019, 8(4): 7.

[178] WALLMAN J, GOTTLIEB M D, RAJARAM V, et al. Local retinal regions control local eye growth and myopia [J]. Science, 1987, 237(4810): 73-7.

[179] RYMER J, WILDSOET C F. The role of the retinal pigment epithelium in eye growth regulation and myopia: a review [J]. Vis Neurosci, 2005, 22(3): 251-61.

[180] HUNG G K, CIUFFREDA K J. Incremental retinal-defocus theory of myopia development--schematic analysis and computer simulation [J]. Comput Biol Med, 2007, 37(7): 930-46.

[181] READ S A, COLLINS M J, SANDER B P. Human optical axial length and defocus [J]. Invest Ophthalmol Vis Sci, 2010, 51(12): 6262-9.

[182] ZUBANOVI? B, KRALJEVI? K, KOVACEVI? D. [A tomographic study of the position of the condyles during centric relation and during maximal intercuspidation] [J]. Acta Stomatol Croat, 1986, 20(1): 45-54.

[183] GHOSH A, COLLINS M J, READ S A, et al. Axial elongation associated with biomechanical factors during near work [J]. Optometry Vision Sci, 2014, 91(3): 322-9.

[184] TROILO D, NICKLA D L, WILDSOET C F. Choroidal thickness changes during altered eye growth and refractive state in a primate [J]. Invest Ophthalmol Vis Sci, 2000, 41(6): 1249-58.

[185] HUNG L F, WALLMAN J, SMITH E L, 3RD. Vision-dependent changes in the choroidal thickness of macaque monkeys [J]. Invest Ophthalmol Vis Sci, 2000, 41(6): 1259-69.

[186] MCFADDEN S A, HOWLETT M H, MERTZ J R. Retinoic acid signals the direction of ocular elongation in the guinea pig eye [J]. Vision Res, 2004, 44(7): 643-53.

[187] NICKLA D L, WALLMAN J. The multifunctional choroid [J]. Prog Retin Eye Res, 2010, 29(2): 144-68.

[188] MOHAN M, PAKRASI S, GARG S P. The role of environmental factors and hereditary predisposition in the causation of low myopia [J]. Acta Ophthalmol Suppl, 1988, 185(54-7.

[189] VINCENT S J, COLLINS M J, READ S A, et al. Corneal changes following near work in myopic anisometropia [J]. Ophthalmic Physiol Opt, 2013, 33(1): 15-25.

[190] READ S A, COLLINS M J, VINCENT S J. Light exposure and physical activity in myopic and emmetropic children [J]. Optom Vis Sci, 2014, 91(3): 330-41.

[191] YOU X, WANG L, TAN H, et al. Near Work Related Behaviors Associated with Myopic Shifts among Primary School Students in the Jiading District of Shanghai: A School-Based One-Year Cohort Study [J]. Plos One, 2016, 11(5): e0154671.

[192] MARUMOTO T, SOTOYAMA M, VILLANUEVA M B G, et al. Relationship Between Posture and Myopia Among Students [J]. Springer Japan, 1998,

[193] P?RSSINEN O, LYYRA A L. Myopia and myopic progression among schoolchildren: a three-year follow-up study [J]. Invest Ophthalmol Vis Sci, 1993, 34(9): 2794-802.

[194] JUNGHANS B, KIELY P M, CREWTHER D P, et al. Referral rates for a functional vision screening among a large cosmopolitan sample of Australian children [J]. Ophthalmic Physiol Opt, 2002, 22(1): 10-25.

[195] GWIAZDA J, THORN F, HELD R. Accommodation, accommodative convergence, and response AC/A ratios before and at the onset of myopia in children [J]. Optom Vis Sci, 2005, 82(4): 273-8.

[196] IP J M, SAW S M, ROSE K A, et al. Role of near work in myopia: findings in a sample of Australian school children [J]. Invest Ophthalmol Vis Sci, 2008, 49(7): 2903-10.

[197] SHI H, FU J, LIU X, et al. Influence of the interaction between parental myopia and poor eye habits when reading and writing and poor reading posture on prevalence of myopia in school students in Urumqi, China [J]. BMC Ophthalmol, 2021, 21(1): 299.

[198] HU Y Y, WU J F, LU T L, et al. Prevalence and Associations of Anisometropia in Children [J]. Invest Ophthalmol Vis Sci, 2016, 57(3): 979-88.

[199] P?RSSINEN O. Anisometropia and changes in anisometropia in school myopia [J]. Optom Vis Sci, 1990, 67(4): 256-9.

[200] SMITH E L, 3RD, HUNG L F, ARUMUGAM B, et al. Observations on the relationship between anisometropia, amblyopia and strabismus [J]. Vision Res, 2017, 134(26-42.

开放日期:

 2022-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式