- 无标题文档
查看论文信息

论文题名(中文):

 JNK/MAPK通路介导的小胶质细胞焦亡在老龄小鼠术后神经认知恢复延迟中的作用及机制    

作者:

 何金丹    

学号:

 B1811110398    

论文语种:

 chi    

学科名称:

 医学 - 临床医学 - 麻醉学    

学生类型:

 博士    

学校:

 北京大学医学部    

院系:

 第三临床医学院    

专业:

 麻醉学    

第一导师姓名:

 郭向阳    

论文完成日期:

 2021-05-15    

论文答辩日期:

 2021-05-18    

论文题名(外文):

 The effects and mechamisms of JNK/MAPK pathway-mediated microglia pyroptosis on delayed neurocognitive recovery after anesthesia plus surgery in aged mice    

关键词(中文):

 术后认知功能恢复延迟 ; 小胶质细胞 ; 焦亡 ; JNK/MAPK通路 ; 神经炎症    

关键词(外文):

 Delayed neurocognitive recovery ; Microglia ; Pyroptosis ; JNK/MAPK signal pathway ; Neuroinflammation    

论文文摘(中文):

背景:
术后神经认知功能恢复延迟(delayed neurocognitive recovery,dNCR)是老年患者围术期常见的中枢神经系统(central nervous system,CNS)并发症,表现为记忆力、注意力以及思维能力障碍。dNCR发生于术后30天以内,通常表现为一过性的认知功能损害,但部分患者可发展为长期认知功能障碍,严重影响患者生活质量,也给患者家庭及社会带来巨大的负担。因此,探究dNCR发生机制,并制定防治策略是临床亟待解决的关键问题。
焦亡是依赖炎症小体的炎性、程序性细胞死亡,也是CNS清除衰老细胞的重要途径之一。焦亡(pyroptosis)主要通过半胱氨酸天冬氨酸蛋白酶(cysteine aspartic acid specific protease,Caspase)活化焦亡执行蛋白gasdermin D(GSDMD),使其活性N端(GSDMD-N)在质膜上聚集形成膜孔,细胞渗透性改变,最终导致细胞肿胀并裂解。过度激活的细胞焦亡引起局部炎症反应加重,从而导致组织损伤,是神经炎症性和神经退行性疾病重要的病理过程,在疾病的发生发展中发挥重要作用。
丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是体内重要的信号转导途径,c-Jun氨基末端激酶(c-Jun N-terminal kinases,JNK)作为MAPK家族成员之一,在调控CNS增殖、分化及炎症反应中发挥重要作用。研究表明,JNK/MAPK信号途径在多种CNS疾病中调控细胞焦亡参与疾病的发生发展。特异性阻断JNK/MAPK信号途径可以有效缓解CNS疾病中细胞焦亡的过度激活,维持正常的神经功能。
外周伤害性刺激经神经和体液途径作用于CNS后导致小胶质细胞过度焦亡,炎症因子大量释放,是神经退行性疾病等炎性脑病的关键环节。研究表明,麻醉手术应激可致海马组织核苷酸结合寡聚化结构域样受体蛋白3(nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain containing 3,NLRP3)炎症小体激活及细胞焦亡,伴随大量炎症因子释放,从而导致术后dNCR。然而,海马小胶质细胞焦亡在术后dNCR中的具体角色,以及JNK/MAPK信号途径是否参与dNCR中小胶质细胞焦亡的调控,目前尚未见报道。
本研究采用常用的术后dNCR动物及细胞模型,分别观察麻醉手术及脂多糖(lipopolysaccharide,LPS)对小胶质细胞焦亡及JNK/MAPK信号通路的影响;在此基础上,采用JNK特异性抑制剂SP600125观察阻断JNK/MAPK信号通路对dNCR小胶质细胞焦亡的影响,解析其对术后认知功能的改善作用,以期为dNCR的防治提供新思路。

目的:
1. 探究七氟烷麻醉下剖腹探查术对老龄小鼠术后认知功能及海马小胶质细胞焦亡的影响;
2. 探究七氟烷麻醉下剖腹探查术对老龄小鼠海马小胶质细胞JNK/MAPK信号通路的影响;
3. 探究JNK/MAPK信号通路在老龄小鼠海马小胶质细胞焦亡中的作用及分子机制。
 
方法:
第一部分:七氟烷麻醉下剖腹探查术对老龄小鼠术后认知功能及海马小胶质细胞焦亡的影响
(1)体内实验:18月龄雌性C57 BL/6小鼠44只,随机分为2组(n=22):假手术组(Sham)和麻醉手术组(Sur)。Sham组在2.5%七氟烷麻醉下备皮及消毒,麻醉时间约25 min。Sur组在2.5%七氟烷麻醉下行剖腹探查术,手术时间约25 min。分别在术后1-6天采用Morris水迷宫(Morris water maze,MWM)(n=12)及术后第2、7天采用条件恐惧实验(fear conditioning test,FCT)(n=10)检测小鼠术后学习记忆功能。
(2)体内实验:18月龄雌性C57 BL/6小鼠24只,随机分为4组(n=6):假手术组(Sham)、麻醉手术后1 h组(Sur 1 h)、6 h组(Sur 6 h)及24 h组(Sur 24 h)。Sham组与麻醉手术组实验方案与实验(1)相同。采用Western blot检测海马焦亡相关蛋白NLRP3、凋亡相关斑点样蛋白(apoptosis associated speck like protein containing Caspase recruitment domain,ASC)、Caspase-1、Cleaved-Caspase-1、GSDMD、GSDMD-N、白细胞介素(interleukin,IL)-1β、pro-IL-1β及IL-18表达情况,酶联免疫吸附试验(enzyme-linked immunosorbent assay,ELISA)检测海马IL-1β及IL-18表达情况。此外,采用免疫荧光(immunofluorescence,IF)检测焦亡最显著时间点(根据Western blot结果)海马小胶质细胞特异性表达蛋白血小板二磷酸腺苷受体亚基12(platelet adenosine diphosphate receptor subunit 12,P2Y12)与NLRP3或GSDMD-N共表达情况。
(3)体外实验:BV2小胶质细胞系,随机分为7组(n=3):对照组(Control),脂多糖处理组(LPS),按药物浓度随机分为0.125 μg/ml组、0.25 μg/ml组、0.5 μg/ml组、1 μg/ml 组、2 μg/ml 组及5 μg/ml组。LPS组给予不同浓度LPS处理12 h,Control组给予等体积磷酸盐缓冲液(phosphate-buffered saline,PBS)。采用细胞活力试剂盒(cell counting kit-8,CCK-8)检测细胞活力情况,Western blot检测焦亡相关蛋白表达情况,碘化丙啶实验(propidium iodide,PI)检测细胞焦亡发生的比例,IF检测GSDMD-N表达情况。
(4)体外实验:BV2小胶质细胞系,随机分为6组(n=3):对照组(Control),脂多糖处理组(LPS),并按药物处理时间随机分为1 h组、3 h组、6 h组、12 h组及24 h组。LPS组给予1 μg/ml LPS,Control组给予等体积PBS。具体检测方法及指标同实验(3)。

第二部分:七氟烷麻醉下剖腹探查术对老龄小鼠海马小胶质细胞JNK/MAPK信号通路的影响
(1)体内实验:18月龄雌性C57 BL/6小鼠24只,随机分为4组(n=6),分组及实验方案同第一部分实验(2)。采用Western blot检测海马MAPK信号通路相关蛋白JNK、p-JNK、P38、p-P38、细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)及p-ERK表达情况。此外,采用IF检测p-JNK活性最显著时间点(根据Western blot结果)海马P2Y12与p-JNK共表达情况。
(2)体外实验:以不同浓度的LPS处理BV2小胶质细胞系12 h,具体分组及实验方案同第一部分实验(3)。采用Western blot检测MAPK信号通路相关蛋白表达情况。
(3)体外实验:以不同持续时间的1 μg/ml LPS处理BV2小胶质细胞系,具体分组及实验方案同第一部分实验(4)。具体检测方法及指标与实验(2)相同。

第三部分:JNK/MAPK信号通路调控小胶质细胞焦亡在老龄小鼠术后认知功能恢复延迟中的作用
(1)体外实验:BV2小胶质细胞系,随机分为4组(n=3):对照组(Control)、SP600125组(SP600125)、LPS组(LPS)及LPS + SP600125组(LPS + SP600125)。给予SP600125(JNK抑制剂)25 μM预处理5 h,1 μg/ml LPS处理6 h。采用CCK-8检测细胞活力情况,乳酸脱氢酶实验(lactate dehydrogenase,LDH)检测LDH释放情况,Western blot检测p-JNK、JNK及焦亡相关蛋白表达情况,PI检测细胞焦亡发生的比例,IF检测NLRP3、GSDMD-N及IL-1β表达情况。
(2)体外实验:BV2小胶质细胞系,随机分为4组(n=3):对照组(Control)、MCC950组(MCC950)、LPS组(LPS)及LPS + MCC950组(LPS + MCC950)。给予MCC950(NLRP3抑制剂)50 μM预处理5 h,1 μg/ml LPS处理6 h。采用Western blot检测p-JNK、JNK及焦亡相关蛋白表达情况,IF检测p-JNK表达情况。
(3)体内实验:18月龄雌性C57 BL/6小鼠112只,随机分为4组(n=28):假手术组(Sham)、SP600125组(SP600125)、麻醉手术组(Sur)及麻醉手术+SP600125组(Sur + SP600125)。腹膜注射200 μl 10 mg/kg SP600125或对照溶剂预处理1周,Sham组与麻醉手术组实验方案与第一部分研究相同。采用MWM(n=12)及FCT(n=10)检测小鼠术后学习记忆功能;麻醉手术后24 h取材各组海马组织(n=6),采用Western blot检测海马p-JNK、JNK及焦亡相关蛋白表达情况,IF检测海马P2Y12与NLRP3或GSDMD-N共表达情况,ELISA检测海马IL-1β及IL-18表达情况。

结果:
第一部分:七氟烷麻醉下剖腹探查术对老龄小鼠术后认知功能及海马小胶质细胞焦亡的影响
(1)体内实验:MWM结果显示,与Sham组相比,Sur组小鼠术后第2、3、4天逃避潜伏期明显延长(P<0.05),术后第6天平台穿越次数及目标象限停留时间明显减少(P<0.05)。2组小鼠测试期间游泳速度无明显差异(P>0.05)。FCT结果显示,Sur组小鼠术后第2、7天场景条件恐惧实验中僵直时间较Sham组显著降低(P<0.05),但2组小鼠声音条件恐惧测试无明显差异(P>0.05)。
(2)体内实验:Western blot结果显示,与Sham组相比,Sur 6 h组和Sur 24 h组海马焦亡相关蛋白表达显著增加,且Sur 24 h组焦亡表达最显著(P<0.05)。ELISA结果显示,Sur 6 h组和Sur 24 h组炎症因子IL-1β和IL-18表达较Sham组显著升高(P<0.05)。IF结果显示,与Sham组相比,Sur 24 h组小鼠海马P2Y12和NLRP3或GSDMD-N表达显著增加(P<0.05),且P2Y12+细胞中NLRP3或GSDMD-N共表达的比例明显上升(P<0.05)。
(3)体外实验:与Control组相比,1 μg/ml、2 μg/ml及5 μg/ml LPS干预组细胞生存率显著降低(P<0.05)、PI阳性细胞百分率显著增加(P<0.05)、GSDMD-N蛋白表达显著升高(P<0.05)。Western blot结果显示,1 μg/ml LPS干预组焦亡相关蛋白表达较Control组显著增加(P<0.05)。
(4)体外实验:与Control组相比,LPS干预6 h、12 h及24 h组细胞生存率明显下降(P<0.05)、PI阳性细胞百分率显著增加(P<0.05)、GSDMD-N蛋白表达显著升高(P<0.05)。Western blot结果显示,LPS干预6 h组焦亡相关蛋白表达较Control组显著提高(P<0.05)。

第二部分:七氟烷麻醉下剖腹探查术对老龄小鼠海马小胶质细胞JNK/MAPK信号通路的影响
(1)体内实验:Western blot结果显示,与Sham组相比,Sur 1 h组、Sur 6 h组及Sur 24 h组小鼠海马p-JNK表达明显升高,且Sur 1 h组p-JNK表达最显著(P<0.05),而各组小鼠海马p-P38和p-ERK表达无统计学差异(P>0.05)。IF结果显示,与Sham组相比,Sur 1 h组小鼠海马P2Y12和p-JNK表达明显升高(P<0.05),且P2Y12+细胞中p-JNK同时表达百分比也明显上升(P<0.05)。
(2)体外实验:Western blot结果观察到,与Control组相比,各浓度LPS干预组 p-JNK及p-ERK蛋白水平均明显上调(P<0.05);0.25 μg/ml、0.5 μg/ml及1 μg/ml LPS干预组p-P38表达明显升高(P<0.05)。
(3)体外实验:Western blot结果显示,与Control组相比,各时间LPS干预组均可见p-JNK蛋白表达明显增高(P<0.05);LPS干预6 h组p-P38和p-ERK表达显著提高(P<0.05)。

第三部分:JNK/MAPK信号通路调控小胶质细胞焦亡在老龄小鼠术后认知功能恢复延迟中的作用及机制研究
(1)体外实验:CCK-8结果显示,SP600125预处理明显缓解LPS诱导的BV2小胶质细胞活力下降(P<0.05)。LDH结果显示,SP600125预处理有效减轻LPS诱导的BV2小胶质细胞LDH释放(P<0.05)。Western blot结果显示,SP600125预处理有效抑制p-JNK后,显著抑制LPS诱导的焦亡相关分子表达(P<0.05)。IF结果显示,LPS + SP600125组NLRP3、GSDMD-N及IL-1β蛋白表达较LPS组明显下调(P<0.05)。PI结果表明,LPS + SP600125组显著降低LPS引起的PI阳性细胞百分率升高(P<0.05)。
(2)体外实验:Western blot结果显示,MCC950预处理抑制NLRP3表达后,可以明显减轻LPS诱导的ASC、GSDMD-N、IL-1β及IL-18蛋白表达(P<0.05)。MCC950预处理对LPS诱导的p-JNK、Cleaved-Caspase-1及pro-IL-1β表达上调无明显改善作用(P>0.05)。IF结果显示,MCC950预处理对LPS引起的p-JNK表达增加无明显缓解作用(P>0.05)。
(3)体内实验:MWM结果显示,与Sham组相比,Sur组小鼠术后第2、3、4天逃避潜伏期明显增加(P<0.05),术后第6天平台穿越次数及目标象限停留时间明显减少(P<0.05),SP600125预处理明显改善上述改变(P<0.05)。各组小鼠测试期间游泳速度无明显差异(P>0.05)。FCT结果显示, SP600125预处理明显逆转Sur组小鼠术后第2、7天场景条件恐惧实验中僵直时间降低(P<0.05),但4组小鼠声音条件恐惧测试无明显差异(P>0.05)。Western blot结果显示,SP600125预处理有效阻断p-JNK表达后,明显降低Sur组小鼠海马焦亡相关分子表达(P<0.05)。IF结果显示,SP600125预处理明显下调Sur组小鼠海马P2Y12和NLRP3或GSDMD-N表达(P<0.05),也明显减少P2Y12+细胞中 NLRP3或GSDMD-N同时表达百分比。ELISA结果显示,Sur + SP600125组海马炎症因子IL-1β及IL-18表达较Sur组明显减低(P<0.05)。

结论:
1. 七氟烷麻醉下剖腹探查术可以引起老龄小鼠术后2 - 7天海马依赖的学习和记忆功能下降,与术后24 h海马小胶质细胞焦亡及神经炎症反应加重有关;
2. 七氟烷麻醉下剖腹探查术可引起术后1 h老龄小鼠海马小胶质细胞JNK/MAPK信号通路的激活,并持续到术后24 h;
3. 抑制JNK/MAPK信号通路可减轻海马小胶质细胞焦亡及神经炎症反应,改善麻醉手术导致的老龄小鼠学习记忆功能损伤。

 

文摘(外文):

Background:
Postoperative delayed neurocognitive recovery (dNCR) is a common central nervous system (CNS) complication in elderly patients during the perioperative period, manifesting as dysfunction in memory, attention, thinking ability. dNCR occurs within 30 days after anesthesia and surgery, it usually performs as transient cognitive impairment, but some patients may develop long-term cognitive dysfunction, which seriously affects the quality of life of patients, and also brings a huge burden to patients' families and social medical resources. Therefore, exploring the pathogenesis of dNCR and formulating prevention and treatment strategies as early as possible are crucial clinical issues that need to be solved.
Pyroptosis is a form of inflammatory programmed cell death relying on inflammasome, and it is also one of the vital pathways for the CNS to eliminate senescent cells. Pyroptosis is mainly activated by cysteine aspartic acid specific protease (Caspase), which activates the pyroptotic executive protein gasdermin D (GSDMD), causing its active N-terminal (GSDMD-N) to accumulate on the membrane to form a membrane pore, which eventually causes cells swelling and lysis. Excessive activation of pyroptosis causes aggravation of local inflammation, which leads to tissue damage. Pyroptosis is an important pathological process of neuroinflammatory and neurodegenerative diseases, which plays a vital role in the occurrence and development of the diseases.
Mitogen-activated protein kinase (MAPK) is an important signal transduction pathway in the body, and c-Jun N-terminal kinases (JNK) are one of the members of the MAPK family. It plays a vital role in regulating the cell proliferation, differentiation and inflammation in the CNS. Studies have revealed that the JNK/MAPK signaling pathway regulates pyroptosis in an array of CNS diseases which participates in the occurrence and development of the disease. The special blockage of the JNK/MAPK signal pathway can effectively mitigate the excessive activation of pyroptosis in CNS diseases, thus reserving the normal function of the brain.
Upon acting on the CNS through the neural and humoral pathways, peripheral harmful stimuli results in excessive activation of microglia pyroptosis and the numerous release of inflammatory cytokines. It is a key pathological hub of the inflammatory encephalopathy such as neurodegenerative diseases. Studies have demonstrated that the stress of anesthesia and surgery can cause nucleotide-binding oligomerization domain leucine rich repeat and pyrin domain containing 3 (NLRP3) inflammasome activation and pyroptosis in the hippocampus, accompanied by the release of a large number of inflammatory cytokines, leading to the occurrence of postoperative dNCR. However, the specific role of hippocampal microglia pyroptosis in postoperative dNCR and whether the JNK/MAPK signal pathway is involved in the regulation of microglia pyroptosis in dNCR has not yet been reported.
In this study, the classical animal and cell models of postoperative dNCR were used to observe the effects of anesthesia surgery and lipopolysaccharide (LPS) on microglia pyroptosis and JNK/MAPK signaling pathways. On this basis, JNK specific inhibitor SP600125 was used to observe the effect of blockage of JNK/MAPK signaling pathway on microglia pyroptosis in dNCR, and analyze its effect on postoperative cognitive function, in order to provide new ideas for the prevention and treatment of dNCR.


Objective:
1. To explore the effects of sevoflurane anesthesia and exploratory laparotomy on postoperative cognitive function and microglia pyroptosis in the hippocampus of aged mice.
2. To explore the effects of sevoflurane anesthesia and exploratory laparotomy on microglia JNK/MAPK signal pathway in the hippocampus of aged mice.
3. To explore the effects and molecular mechanisms of JNK/MAPK signaling pathway on microglia pyroptosis in the hippocampus of aged mice.

Methods:
Part Ⅰ: The effects of exploratory laparotomy under sevoflurane anesthesia on postoperative cognitive function and microglia pyroptosis in the hippocampus of aged mice
(1) In vivo: Forty-four female C57 BL/6 mice, 18-month-old, were randomly divided into 2 groups (n=22): sham operation group (Sham) and anesthesia plus surgery group (Sur). Animals in the sham group were shaved and sterilized under 2.5% sevoflurane anesthesia, anesthesia was about 25 minutes. Sur group underwent exploratory laparotomy under 2.5% sevoflurane anesthesia, the operation was about 25 minutes. Morris water maze (MWM) (n=12) examined 1 - 6 days after surgery and fear conditioning test (FCT) (n=10) detected on the 2nd and 7th day after surgery were used to examine the learning and memory ability of the mice.
(2) In vivo: Twenty-four female C57 BL/6 mice, 18-month-old, were randomly assigned into 4 groups (n=6): sham operation group (Sham), 1 h after anesthesia and surgery group (Sur 1 h), 6 h after anesthesia and surgery group (Sur 6 h) and 24 h after anesthesia and surgery group (Sur 24 h). The experimental protocol of the Sham group and Sur group was the same as an experiment (1). Western blot was utilized to detect the expression of pyroptosis-associated proteins including NLRP3, apoptosis associated speck like protein containing Caspase recruitment domain (ASC), Caspase-1, Cleaved-Caspase-1, GSDMD, GSDMD-N, interleukin (IL)-1β、pro-IL-1β and IL-18 in the hippocampus. Enzyme-linked immunosorbent assay (ELISA) was applied to evaluate the expression of inflammatory factors IL-1β and IL-18 in the hippocampus. Moreover, immunofluorescence (IF) was used to detect the co-expression of microglial specific protein platelet adenosine diphosphate receptor subunit 12 (P2Y12) and NLRP3 or GSDMD-N in the hippocampus at the most significant time point of pyroptosis (according to Western blot results).
(3) In vitro: microglial cell line BV2 was randomly divided into 7 groups (n=3): control group (Control), and lipopolysaccharide (LPS) group which was randomly assigned to 0.125 μg/ml group, 0.25 μg/ml group, 0.5 μg/ml group, 1 μg/ml group, 2 μg/ml group and 5 μg/ml group based on LPS concentration. LPS group was administrated with different concentrations of LPS for 12 h, Control group was treated with the same volume of phosphate-buffered saline (PBS). Cell viability was detected by cell counting kit-8 (CCK-8), the expression of pyroptosis-related proteins was examined by Western blot, the percentage of pyroptotic cell death was assessed by propidium iodide (PI) test, and the expression of GSDMD-N was evaluated by IF.
(4) In vitro: microglial cell line BV2 was randomly allocated into 6 groups (n=3): control group (Control), and lipopolysaccharide (LPS) group which was randomly divided into 1 h group, 3 h group, 6 h group, 12 h group, and 24 h group according to LPS duration time. LPS group was treated with 1 μg/ml LPS, Control group was incubated with the same volume of PBS. The experimental methods and indicators are the same as the experiment (3).

Part ⅠI: The effects of exploratory laparotomy under sevoflurane anesthesia on microglia JNK/MAPK signal pathway in the hippocampus of aged mice
(1) In vivo: Twenty-four female C57 BL/6 mice, 18-month-old, were randomly assigned into 4 groups (n=6). The grouping and experimental protocol were the same as the first part of the experiment (2). Western blot was used to assess the expression of the MAPK signal pathway-related proteins JNK, p-JNK, P38, p-P38, extracellular signal-regulated kinase (ERK) and p-ERK in the hippocampus. Moreover, IF was subjected to detect the co-expression of P2Y12 and p-JNK in the hippocampus at the time point when the expression of p-JNK was highest (according to Western blot results).
(2) In vitro: microglial cell line BV2 was treated with different concentrations of LPS for 12 h. The grouping and experimental protocol were the same as the first part of the experiment (3). Western blot was performed to detect the expression of MAPK signal pathway-related proteins.
(3) In vitro: microglial cell line BV2 was treated with different duration of 1 μg/ml LPS. The grouping and experimental protocol were the same as the first part of the experiment (4). The experimental methods and indicators are the same as the experiment (2).

Part ⅠII: The effects and mechanisms of JNK/MAPK pathway-mediated microglia pyroptosis on delayed neurocognitive recovery in aged mice
(1) In vitro: microglial cell line BV2 was randomly allocated into 4 groups (n=3): control group (Control), SP600125 group (SP600125), LPS group (LPS) and LPS + SP600125 group (LPS + SP600125). BV2 cells were treated with SP600125 (JNK inhibitor) 25 μM for 5 h, or 1 μg/ml LPS for 6 h. The cell viability was evaluated by CCK-8, the release of lactate dehydrogenase (LDH) was detected by LDH test, the expression of p-JNK, JNK, and pyroptosis-related proteins were detected by Western blot, the pyroptotic cell death was examined by PI test, and the expression of NLRP3, GSDMD-N and IL-1β were investigated by IF.
(2) In vitro: microglial cell line BV2 was randomly allocated into 4 groups (n=3): control group (Control), MCC950 group (MCC950), LPS group (LPS) and LPS + MCC950 group (LPS + MCC950). BV2 cells were pretreated with 50 μ M MCC950 (NLRP3 inhibitor) for 5 h, or 1 μg/ml LPS for 6 h. Western blot was performed to evaluate the expression of p-JNK, JNK, and pyroptosis-related proteins. IF was executed to determine the expression of p-JNK.
(3) In vivo: One hundred and twelve 18-month-old female C57 BL/6 mice were randomly distributed into 4 groups (n=28): sham operation group (Sham), SP600125 group (SP600125), sevoflurane anesthesia and surgery group (Sur) and sevoflurane anesthesia surgery and SP600125 group (Sur + SP600125). Mice were intraperitoneally injected with 10 mg/kg SP600125 or vehicle at 200 μl daily for the consecutive 1 week, the experimental protocol of Sham and Surgery were the same as the first part. MWM (n=12) and FCT (n=10) were used to evaluate the learning and memory ability of the mice. The hippocampal tissues of each group were harvested 24 h after anesthesia and surgery (n=6). The expression of p-JNK, JNK, and pyroptosis-associated proteins in the hippocampus were examined by Western blot. The co-expression of P2Y12 and NLRP3 or GSDMD-N in the hippocampus was detected by IF. The expression of IL-1β and IL-18 in the hippocampus were evaluated by ELISA.

Results:
Part Ⅰ: The effects of exploratory laparotomy under sevoflurane anesthesia on postoperative cognitive function and microglia pyroptosis in the hippocampus of aged mice
(1) In vivo: The results of MWM displayed that, compared with the Sham group, the escape latency of the mice in the Sur group was significantly prolonged on the 2, 3, and 4 days after surgery (P<0.05), the times of platform crossings and the percentage of time spent in the target quadrant on the 6 days after surgery in the Sur group were significantly less than those in the Sham group (P<0.05). There was no significant difference in swimming speed between the two groups during the test (P>0.05). The results of FCT depicted that, compared with the Sham group, the mice in the Sur group had significantly reduced freezing time in the contextual fear conditioning test on the 2 and 7 days after surgery (P<0.05). No significant difference in the freezing time between the two groups was observed in the tone-related fear conditioning test on the 2 and 7 days after surgery (P>0.05).
(2) In vivo: The results of Western blot showed that the expression of pyroptosis-associated proteins in the hippocampus was significantly elevated in the Sur 6 h and Sur 24 h group compared with Sham group, and the highest expression of pyroptosis was in Sur 24 h group (P<0.05). The results of ELISA showed that in the hippocampus of mice, compared with the Sham group, the expression of IL-1β and IL-18 in the Sur 6 h and Sur 24 h group were significantly improved (P<0.05). The data of IF demonstrated that compared with the Sham group, the expression of P2Y12 and NLRP3 or GSDMD-N in the hippocampus of mice in the Sur 24 h group were remarkedly increased, and the percentage of co-expression of NLRP3 or GSDMD-N in P2Y12+ cells was also significantly elevated (P<0.05).
(3) In vitro: Compared with the Control group, the cell viability was decreased (P<0.05), the percentage of PI-positive cells was progressively elevated (P<0.05), the expression of GSDMD-N was markedly augmented (P<0.05) in 1 μg/ml, 2 μg/ml and 5 μg/ml LPS treatment group. The data of Western blot unveiled that the expression of pyroptosis-associated proteins in 1 μg/ml LPS group was markedly elevated compared with the Control group (P<0.05).
(4) In vitro: Compared with the Control group, the cell viability was significantly reduced (P<0.05), the percentage of PI-positive cells was markedly elevated (P<0.05), the expression of GSDMD-N was dramatically increased (P<0.05) in LPS 6 h group, 12 h group and 24 h group. The Western blot data indicated that the expression of pyroptosis-associated proteins was enhanced in LPS 6 h group compared with the Control group (P<0.05).

Part ⅠI: The effects of exploratory laparotomy under sevoflurane anesthesia on microglia JNK/MAPK signal pathway in the hippocampus of aged mice
(1) In vivo: The data of Western blot revealed that the expression of p-JNK was remarkedly up-regulated in the hippocampus of mice in Sur 1h, Sur 6h, and Sur 24h group, and the highest expression of p-JNK was in Sur 1 h group (P<0.05). While the expression of p-P38 and p-ERK were not significantly different in the hippocampus of mice among all the groups (P>0.05). The findings of IF indicated that compared with the Sham group, the expression of P2Y12 and p-JNK in the hippocampus of mice in the Sur 1 h group were remarkedly increased, and the percentage of co-expression of p-JNK in P2Y12+ cells was also obviously increased (P<0.05).
(2) In vitro: The results of Western blot unveiled that the expression of p-JNK and p-ERK in different concentrations of the LPS treatment group was significantly higher than that in the Control group (P<0.05). The levels of p-P38 expression in 0.25 μg/ml, 0.5 μg/ml and 1 μg/ml LPS treatment group were apparently higher than that in the Control group (P<0.05).
(3) In vitro: The Western blot results depicted that the level of p-JNK in different duration of the LPS treatment group was significantly higher than that in the Control group (P< 0.05). The expression of p-P38 and p-ERK in 6 h of the LPS treatment group was increased compared with the Control group (P< 0.05).

Part ⅠII: The effects and mechanisms of JNK/MAPK pathway-mediated microglia pyroptosis on delayed neurocognitive recovery in aged mice
(1) In vitro: The CCK-8 results revealed that SP600125 pretreatment significantly mitigated the decline of cell viability induced by LPS treatment (P<0.05). The data of LDH showed that the release of LDH stimulated by LPS incubation was dramatically decreased by SP600125 pretreatment (P<0.05). The results of Western blot showed that after p-JNK levels were significantly inhibited by SP600125 pretreatment, the increased expression of pyroptosis-associated proteins induced by LPS administration was markedly weakened (P<0.05). The results of IF showed that the expression of NLRP3, GSDMD-N and IL-1β protein in the LPS + SP600125 group was significantly lower than that in the LPS group (P<0.05). The results of PI revealed that LPS-induced increased percentage of PI-positive cells was significantly reduced in LPS + SP600125 group (P<0.05).
(2) In vitro: The results of Western blot displayed that MCC950 pretreatment could significantly reduce the expression of ASC, GSDMD-N, IL-1β, and IL-18 stimulated by LPS incubation after NLRP3 levels were effectively suppressed (P<0.05). While LPS-induced elevated expression of p-JNK, Cleaved-Caspase-1 and pro-IL-1β could not be abolished by MCC950 pretreatment (P>0.05). The graphs of IF showed that MCC950 pretreatment could not mitigate the augmented expression of p-JNK induced by LPS stimulation (P>0.05).
(3) In vivo: The results of MWM showed that compared with the Sham group, the escape latency in the Sur group was significantly increased on postoperative 2, 3, and 4 days (P<0.05), the number of platform crossing and the time spent in the target quadrant in Sur group were significantly decreased on 6 days after surgery, while SP600125 treatment significantly improved all these changes (P<0.05). There was no significant difference in swimming speed among the four groups during the test (P>0.05). The results of FCT revealed that in the context test, SP600125 pretreatment reversed the decreased freezing time caused by anesthesia and surgery on postoperative 2 and 7 days (P<0.05). No significant difference in the freezing time among the four groups in the tone test was observed on the 2 and 7 days after surgery (P>0.05). The data of Western blot exhibited that with an effective blockage of p-JNK expression, SP600125 pretreatment significantly decreased the enhanced expression of pyroptosis-associated proteins in the hippocampus of mice in the Sur group (P<0.05). The results of IF demonstrated that SP600125 pretreatment down-regulated the expression of P2Y12 and NLRP3 or GSDMD-N in the hippocampus of mice caused by anesthesia and surgery (P<0.05), and reduced the percentage of co-expression of NLRP3 or GSDMD-N in P2Y12+ cells (P<0.05). The ELISA results revealed that the expression of IL-1β and IL-18 in the hippocampus of the Sur + SP600125 group were notably attenuated than that in the Sur group (P<0.05).

Conclusion:
1. The exploratory laparotomy under sevoflurane anesthesia can cause hippocampal-dependent learning and memory decline in aged mice 2-7 days after surgery, which is related to microglia pyroptosis and increased neuroinflammation in the hippocampus at 24 h after surgery
2. The exploratory laparotomy under sevoflurane anesthesia can induce the activation of the microglia JNK/MAPK signal pathway in the hippocampus of aged mice 1 h after surgery, and lasts to 24 h after surgery
3. Inhibition of JNK/MAPK pathway can alleviate microglia pyroptosis and neuroinflammatory responses in the hippocampus, thus improving hippocampus-dependent learning and memory impairments caused by anesthesia and surgery in aged mice


 

 

论文目录:
第一章 文献综述 1
1.1 焦亡的概念 2
1.2 焦亡的形态学特征 2
1.3 焦亡的信号途径 3
1.3.1 经典途经细胞焦亡 3
1.3.2 非经典途经细胞焦亡 5
1.4 炎症小体的组分 6
1.5小胶质细胞焦亡与中枢神经系统相关疾病 7
1.5.1 小胶质细胞焦亡与阿尔茨海默病 8
1.5.2 小胶质细胞焦亡与帕金森病 9
1.5.3 小胶质细胞焦亡与脑卒中 10
1.5.4 小胶质细胞焦亡与围术期神经认知障碍 12
1.6 结语与展望 14
第二章 论文正文 15
2.1 引言 15
2.2 第一部分:七氟烷麻醉下剖腹探查术对老龄小鼠术后认知功能及海马小胶质细胞焦亡的影响 18
2.2.1 引言 18
2.2.2 对象与方法 19
2.2.3 结果 32
2.2.4 讨论 40
2.2.5 小结 44
2.3 第二部分:七氟烷麻醉下剖腹探查术对老龄小鼠海马小胶质细胞JNK/MAPK信号通路的影响 45
2.3.1 引言 45
2.3.2 对象与方法 46
2.3.3 结果 48
2.3.4 讨论 52
2.3.5 小结 54
2.4 第三部分:JNK/MAPK信号通路调控小胶质细胞焦亡在dNCR中的作用 55
2.4.1 引言 55
2.4.2 对象与方法 56
2.4.3 结果 60
2.4.4 讨论 73
2.4.5 小结 76
第三章 结论及展望 77
3.1 结论 77
3.2 展望 77
第四章 创新性与局限性 78
4.1 创新性 78
4.2 局限性 78
参考文献 79
致谢 95
北京大学学位论文原创性声明和使用授权说明 97
个人简历、在学期间发表的学术论文与研究成果 99

参考文献:

[1] Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012, 481(7381):278-286.

[2] Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014, 157(5):1013-1022.

[3] Green DR. The Coming Decade of Cell Death Research: Five Riddles. Cell. 2019, 177(5):1094-1107.

[4] Wang S, Yuan YH, Chen NH, Wang HB. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease. Int Immunopharmacol. 2019, 67:458-464.

[5] Van Opdenbosch N, Lamkanfi M. Caspases in Cell Death, Inflammation, and Disease. Immunity. 2019, 50(6):1352-1364.

[6] Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 2016, 26(9):1007-1020.

[7] Frank D, Vince JE. Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ. 2019, 26(1):99-114.

[8] Yang J, Liu Z, Xiao TS. Post-translational regulation of inflammasomes. Cell Mol Immunol. 2017, 14(1):65-79.

[9] Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007, 14(9):1590-1604.

[10] Voet S, Srinivasan S, Lamkanfi M, van Loo G. Inflammasomes in neuroinflammatory and neurodegenerative diseases. EMBO Mol Med. 2019, 11(6).

[11] Shi J, Gao W, Shao F. Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. Trends Biochem Sci. 2017, 42(4):245-254.

[12] Ding J, Shao F. SnapShot: The Noncanonical Inflammasome. Cell. 2017, 168(3):544-544 e541.

[13] Ruhl S, Broz P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. Eur J Immunol. 2015, 45(10):2927-2936.

[14] Platnich JM, Chung H, Lau A, Sandall CF, Bondzi-Simpson A, Chen HM, Komada T, Trotman-Grant AC, Brandelli JR, Chun J, Beck PL, Philpott DJ, Girardin SE, Ho M, Johnson RP, MacDonald JA, Armstrong GD, Muruve DA. Shiga Toxin/Lipopolysaccharide Activates Caspase-4 and Gasdermin D to Trigger Mitochondrial Reactive Oxygen Species Upstream of the NLRP3 Inflammasome. Cell Rep. 2018, 25(6):1525-1536 e1527.

[15] Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol. 2016, 213(6):617-629.

[16] Boyden ED, Dietrich WF. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet. 2006, 38(2):240-244.

[17] Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, Leaf IA, Aderem A. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010, 107(7):3076-3080.

[18] Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009, 458(7237):514-518.

[19] Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S, Wang F, Shao F. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014, 513(7517):237-241.

[20] Van Opdenbosch N, Gurung P, Vande Walle L, Fossoul A, Kanneganti TD, Lamkanfi M. Activation of the NLRP1b inflammasome independently of ASC-mediated caspase-1 autoproteolysis and speck formation. Nat Commun. 2014, 5:3209.

[21] Broz P, von Moltke J, Jones JW, Vance RE, Monack DM. Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe. 2010, 8(6):471-483.

[22] Liu L, Chan C. The role of inflammasome in Alzheimer's disease. Ageing Res Rev. 2014, 15:6-15.

[23] Denes A, Coutts G, Lenart N, Cruickshank SM, Pelegrin P, Skinner J, Rothwell N, Allan SM, Brough D. AIM2 and NLRC4 inflammasomes contribute with ASC to acute brain injury independently of NLRP3. Proc Natl Acad Sci U S A. 2015, 112(13):4050-4055.

[24] Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013, 13(9):679-692.

[25] Liu Z, Yao X, Jiang W, Li W, Zhu S, Liao C, Zou L, Ding R, Chen J. Advanced oxidation protein products induce microglia-mediated neuroinflammation via MAPKs-NF-kappaB signaling pathway and pyroptosis after secondary spinal cord injury. J Neuroinflammation. 2020, 17(1):90.

[26] Gong LJ, Wang XY, Gu WY, Wu X. Pinocembrin ameliorates intermittent hypoxia-induced neuroinflammation through BNIP3-dependent mitophagy in a murine model of sleep apnea. J Neuroinflammation. 2020, 17(1):337.

[27] Dai W, Wang X, Teng H, Li C, Wang B, Wang J. Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats. Int Immunopharmacol. 2019, 66:215-223.

[28] Hodges JR. Alzheimer's centennial legacy: origins, landmarks and the current status of knowledge concerning cognitive aspects. Brain. 2006, 129(Pt 11):2811-2822.

[29] Tejera D, Mercan D, Sanchez-Caro JM, Hanan M, Greenberg D, Soreq H, Latz E, Golenbock D, Heneka MT. Systemic inflammation impairs microglial Abeta clearance through NLRP3 inflammasome. EMBO J. 2019, 38(17):e101064.

[30] Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 2008, 9(8):857-865.

[31] Murphy N, Grehan B, Lynch MA. Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Med. 2014, 16(1):205-215.

[32] Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature. 2013, 493(7434):674-678.

[33] Couturier J, Stancu IC, Schakman O, Pierrot N, Huaux F, Kienlen-Campard P, Dewachter I, Octave JN. Activation of phagocytic activity in astrocytes by reduced expression of the inflammasome component ASC and its implication in a mouse model of Alzheimer disease. J Neuroinflammation. 2016, 13:20.

[34] Liu L, Chan C. IPAF inflammasome is involved in interleukin-1beta production from astrocytes, induced by palmitate; implications for Alzheimer's Disease. Neurobiol Aging. 2014, 35(2):309-321.

[35] Venegas C, Kumar S, Franklin BS, Dierkes T, Brinkschulte R, Tejera D, Vieira-Saecker A, Schwartz S, Santarelli F, Kummer MP, Griep A, Gelpi E, Beilharz M, Riedel D, Golenbock DT, Geyer M, Walter J, Latz E, Heneka MT. Microglia-derived ASC specks cross-seed amyloid-beta in Alzheimer's disease. Nature. 2017, 552(7685):355-361.

[36] Cully M. Neurodegenerative diseases: Inflammasome protein seeds plaques in Alzheimer disease. Nat Rev Drug Discov. 2018, 17(2):96.

[37] Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S, McManus RM, Tejera D, Griep A, Santarelli F, Brosseron F, Opitz S, Stunden J, Merten M, Kayed R, Golenbock DT, Blum D, Latz E, Buee L, Heneka MT. NLRP3 inflammasome activation drives tau pathology. Nature. 2019, 575(7784):669-673.

[38] Tan MS, Tan L, Jiang T, Zhu XC, Wang HF, Jia CD, Yu JT. Amyloid-beta induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer's disease. Cell Death Dis. 2014, 5:e1382.

[39] Pontillo A, Catamo E, Arosio B, Mari D, Crovella S. NALP1/NLRP1 genetic variants are associated with Alzheimer disease. Alzheimer Dis Assoc Disord. 2012, 26(3):277-281.

[40] Salminen A, Ojala J, Suuronen T, Kaarniranta K, Kauppinen A. Amyloid-beta oligomers set fire to inflammasomes and induce Alzheimer's pathology. J Cell Mol Med. 2008, 12(6A):2255-2262.

[41] Chen J, Shu S, Chen Y, Liu Z, Yu L, Yang L, Xu Y, Zhang M. AIM2 deletion promotes neuroplasticity and spatial memory of mice. Brain Res Bull. 2019, 152:85-94.

[42] Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol. 2020.

[43] Sveinbjornsdottir S. The clinical symptoms of Parkinson's disease. J Neurochem. 2016, 139 Suppl 1:318-324.

[44] Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett. 1994, 180(2):147-150.

[45] Ferrari CC, Pott Godoy MC, Tarelli R, Chertoff M, Depino AM, Pitossi FJ. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis. 2006, 24(1):183-193.

[46] Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm (Vienna). 2000, 107(3):335-341.

[47] Codolo G, Plotegher N, Pozzobon T, Brucale M, Tessari I, Bubacco L, de Bernard M. Triggering of inflammasome by aggregated alpha-synuclein, an inflammatory response in synucleinopathies. PLoS One. 2013, 8(1):e55375.

[48] Gustot A, Gallea JI, Sarroukh R, Celej MS, Ruysschaert JM, Raussens V. Amyloid fibrils are the molecular trigger of inflammation in Parkinson's disease. Biochem J. 2015, 471(3):323-333.

[49] Rapsinski GJ, Wynosky-Dolfi MA, Oppong GO, Tursi SA, Wilson RP, Brodsky IE, Tukel C. Toll-like receptor 2 and NLRP3 cooperate to recognize a functional bacterial amyloid, curli. Infect Immun. 2015, 83(2):693-701.

[50] Zhou Y, Lu M, Du RH, Qiao C, Jiang CY, Zhang KZ, Ding JH, Hu G. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol Neurodegener. 2016, 11:28.

[51] Gordon R, Albornoz EA, Christie DC, Langley MR, Kumar V, Mantovani S, Robertson AAB, Butler MS, Rowe DB, O'Neill LA, Kanthasamy AG, Schroder K, Cooper MA, Woodruff TM. Inflammasome inhibition prevents alpha-synuclein pathology and dopaminergic neurodegeneration in mice. Sci Transl Med. 2018, 10(465).

[52] Lee E, Hwang I, Park S, Hong S, Hwang B, Cho Y, Son J, Yu JW. MPTP-driven NLRP3 inflammasome activation in microglia plays a central role in dopaminergic neurodegeneration. Cell Death Differ. 2019, 26(2):213-228.

[53] Cheng J, Liao Y, Dong Y, Hu H, Yang N, Kong X, Li S, Li X, Guo J, Qin L, Yu J, Ma C, Li J, Li M, Tang B, Yuan Z. Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy. 2020:1-13.

[54] Mao Z, Liu C, Ji S, Yang Q, Ye H, Han H, Xue Z. The NLRP3 Inflammasome is Involved in the Pathogenesis of Parkinson's Disease in Rats. Neurochem Res. 2017, 42(4):1104-1115.

[55] Wang W, Nguyen LT, Burlak C, Chegini F, Guo F, Chataway T, Ju S, Fisher OS, Miller DW, Datta D, Wu F, Wu CX, Landeru A, Wells JA, Cookson MR, Boxer MB, Thomas CJ, Gai WP, Ringe D, Petsko GA, Hoang QQ. Caspase-1 causes truncation and aggregation of the Parkinson's disease-associated protein alpha-synuclein. Proc Natl Acad Sci U S A. 2016, 113(34):9587-9592.

[56] Zhang P, Shao XY, Qi GJ, Chen Q, Bu LL, Chen LJ, Shi J, Ming J, Tian B. Cdk5-Dependent Activation of Neuronal Inflammasomes in Parkinson's Disease. Mov Disord. 2016, 31(3):366-376.

[57] Cheng X, Xu S, Zhang C, Qin K, Yan J, Shao X. The BRCC3 regulated by Cdk5 promotes the activation of neuronal NLRP3 inflammasome in Parkinson's disease models. Biochem Biophys Res Commun. 2020, 522(3):647-654.

[58] Zhu J, Hu Z, Han X, Wang D, Jiang Q, Ding J, Xiao M, Wang C, Lu M, Hu G. Dopamine D2 receptor restricts astrocytic NLRP3 inflammasome activation via enhancing the interaction of beta-arrestin2 and NLRP3. Cell Death Differ. 2018, 25(11):2037-2049.

[59] Qiao C, Yin N, Gu HY, Zhu JL, Ding JH, Lu M, Hu G. Atp13a2 Deficiency Aggravates Astrocyte-Mediated Neuroinflammation via NLRP3 Inflammasome Activation. CNS Neurosci Ther. 2016, 22(6):451-460.

[60] Fan Z, Pan YT, Zhang ZY, Yang H, Yu SY, Zheng Y, Ma JH, Wang XM. Systemic activation of NLRP3 inflammasome and plasma alpha-synuclein levels are correlated with motor severity and progression in Parkinson's disease. J Neuroinflammation. 2020, 17(1):11.

[61] Lu M, Sun XL, Qiao C, Liu Y, Ding JH, Hu G. Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging. 2014, 35(2):421-430.

[62] Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, Palanisamy BN, Rokad D, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson's disease. NPJ Parkinsons Dis. 2017, 3:30.

[63] Panicker N, Kanthasamy A, Kanthasamy AG. Fyn amplifies NLRP3 inflammasome signaling in Parkinson's disease. Aging (Albany N Y). 2019, 11(16):5871-5873.

[64] Shao QH, Chen Y, Li FF, Wang S, Zhang XL, Yuan YH, Chen NH. TLR4 deficiency has a protective effect in the MPTP/probenecid mouse model of Parkinson's disease. Acta Pharmacol Sin. 2019, 40(12):1503-1512.

[65] Campolo M, Paterniti I, Siracusa R, Filippone A, Esposito E, Cuzzocrea S. TLR4 absence reduces neuroinflammation and inflammasome activation in Parkinson's diseases in vivo model. Brain Behav Immun. 2019, 76:236-247.

[66] Titze-de-Almeida R, Titze-de-Almeida SS. miR-7 Replacement Therapy in Parkinson's Disease. Curr Gene Ther. 2018, 18(3):143-153.

[67] Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, Moran AE, Sacco RL, Anderson L, Truelsen T, O'Donnell M, Venketasubramanian N, Barker-Collo S, Lawes CM, Wang W, Shinohara Y, Witt E, Ezzati M, Naghavi M, Murray C, Global Burden of Diseases I, Risk Factors S, the GBDSEG. Global and regional burden of stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014, 383(9913):245-254.

[68] Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2003, 2(1):43-53.

[69] Bhat RV, DiRocco R, Marcy VR, Flood DG, Zhu Y, Dobrzanski P, Siman R, Scott R, Contreras PC, Miller M. Increased expression of IL-1beta converting enzyme in hippocampus after ischemia: selective localization in microglia. J Neurosci. 1996, 16(13):4146-4154.

[70] Benchoua A, Guegan C, Couriaud C, Hosseini H, Sampaio N, Morin D, Onteniente B. Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci. 2001, 21(18):7127-7134.

[71] Friedlander RM, Gagliardini V, Hara H, Fink KB, Li W, MacDonald G, Fishman MC, Greenberg AH, Moskowitz MA, Yuan J. Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J Exp Med. 1997, 185(5):933-940.

[72] Hara H, Fink K, Endres M, Friedlander RM, Gagliardini V, Yuan J, Moskowitz MA. Attenuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J Cereb Blood Flow Metab. 1997, 17(4):370-375.

[73] Schielke GP, Yang GY, Shivers BD, Betz AL. Reduced ischemic brain injury in interleukin-1 beta converting enzyme-deficient mice. J Cereb Blood Flow Metab. 1998, 18(2):180-185.

[74] Ross J, Brough D, Gibson RM, Loddick SA, Rothwell NJ. A selective, non-peptide caspase-1 inhibitor, VRT-018858, markedly reduces brain damage induced by transient ischemia in the rat. Neuropharmacology. 2007, 53(5):638-642.

[75] Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA. Inhibition of interleukin 1beta converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci U S A. 1997, 94(5):2007-2012.

[76] Yoshimoto T, Houkin K, Tada M, Abe H. Induction of cytokines, chemokines and adhesion molecule mRNA in a rat forebrain reperfusion model. Acta Neuropathol. 1997, 93(2):154-158.

[77] Kang SJ, Wang S, Hara H, Peterson EP, Namura S, Amin-Hanjani S, Huang Z, Srinivasan A, Tomaselli KJ, Thornberry NA, Moskowitz MA, Yuan J. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J Cell Biol. 2000, 149(3):613-622.

[78] Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD. Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab. 2009, 29(3):534-544.

[79] Fann DY, Lee SY, Manzanero S, Tang SC, Gelderblom M, Chunduri P, Bernreuther C, Glatzel M, Cheng YL, Thundyil J, Widiapradja A, Lok KZ, Foo SL, Wang YC, Li YI, Drummond GR, Basta M, Magnus T, Jo DG, Mattson MP, Sobey CG, Arumugam TV. Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke. Cell Death Dis. 2013, 4:e790.

[80] Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q, Yi F. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab. 2014, 34(4):660-667.

[81] Lammerding L, Slowik A, Johann S, Beyer C, Zendedel A. Poststroke Inflammasome Expression and Regulation in the Peri-Infarct Area by Gonadal Steroids after Transient Focal Ischemia in the Rat Brain. Neuroendocrinology. 2016, 103(5):460-475.

[82] Li C, Wang J, Fang Y, Liu Y, Chen T, Sun H, Zhou XF, Liao H. Nafamostat mesilate improves function recovery after stroke by inhibiting neuroinflammation in rats. Brain Behav Immun. 2016, 56:230-245.

[83] Gong Z, Pan J, Shen Q, Li M, Peng Y. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation. 2018, 15(1):242.

[84] Ito M, Shichita T, Okada M, Komine R, Noguchi Y, Yoshimura A, Morita R. Bruton's tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun. 2015, 6:7360.

[85] Wang H, Chen H, Jin J, Liu Q, Zhong D, Li G. Inhibition of the NLRP3 inflammasome reduces brain edema and regulates the distribution of aquaporin-4 after cerebral ischaemia-reperfusion. Life Sci. 2020, 251:117638.

[86] Liu H, Wu X, Luo J, Zhao L, Li X, Guo H, Bai H, Cui W, Guo W, Feng D, Qu Y. Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3beta. Exp Neurol. 2020, 329:113302.

[87] Li Q, Cao Y, Dang C, Han B, Han R, Ma H, Hao J, Wang L. Inhibition of double-strand DNA-sensing cGAS ameliorates brain injury after ischemic stroke. EMBO Mol Med. 2020, 12(4):e11002.

[88] Sun X, Song X, Zhang L, Sun J, Wei X, Meng L, An J. NLRP2 is highly expressed in a mouse model of ischemic stroke. Biochem Biophys Res Commun. 2016, 479(4):656-662.

[89] Li ZG, Shui SF, Han XW, Yan L. NLRP10 ablation protects against ischemia/reperfusion-associated brain injury by suppression of neuroinflammation. Exp Cell Res. 2020, 389(2):111912.

[90] Ishrat T, Mohamed IN, Pillai B, Soliman S, Fouda AY, Ergul A, El-Remessy AB, Fagan SC. Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol. 2015, 51(2):766-778.

[91] Luo Y, Reis C, Chen S. NLRP3 Inflammasome in the Pathophysiology of Hemorrhagic Stroke: A Review. Curr Neuropharmacol. 2019, 17(7):582-589.

[92] Ma Q, Chen S, Hu Q, Feng H, Zhang JH, Tang J. NLRP3 inflammasome contributes to inflammation after intracerebral hemorrhage. Ann Neurol. 2014, 75(2):209-219.

[93] Ren H, Kong Y, Liu Z, Zang D, Yang X, Wood K, Li M, Liu Q. Selective NLRP3 (Pyrin Domain-Containing Protein 3) Inflammasome Inhibitor Reduces Brain Injury After Intracerebral Hemorrhage. Stroke. 2018, 49(1):184-192.

[94] Luo Y, Lu J, Ruan W, Guo X, Chen S. MCC950 attenuated early brain injury by suppressing NLRP3 inflammasome after experimental SAH in rats. Brain Res Bull. 2019, 146:320-326.

[95] Liang H, Sun Y, Gao A, Zhang N, Jia Y, Yang S, Na M, Liu H, Cheng X, Fang X, Ma W, Zhang X, Wang F. Ac-YVAD-cmk improves neurological function by inhibiting caspase-1-mediated inflammatory response in the intracerebral hemorrhage of rats. Int Immunopharmacol. 2019, 75:105771.

[96] Lin X, Ye H, Siaw-Debrah F, Pan S, He Z, Ni H, Xu Z, Jin K, Zhuge Q, Huang L. AC-YVAD-CMK Inhibits Pyroptosis and Improves Functional Outcome after Intracerebral Hemorrhage. Biomed Res Int. 2018, 2018:3706047.

[97] Feng L, Chen Y, Ding R, Fu Z, Yang S, Deng X, Zeng J. P2X7R blockade prevents NLRP3 inflammasome activation and brain injury in a rat model of intracerebral hemorrhage: involvement of peroxynitrite. J Neuroinflammation. 2015, 12:190.

[98] Chen S, Ma Q, Krafft PR, Hu Q, Rolland W, 2nd, Sherchan P, Zhang J, Tang J, Zhang JH. P2X7R/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis. 2013, 58:296-307.

[99] Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke. 2011, 42(6):1781-1786.

[100] Dutra FF, Alves LS, Rodrigues D, Fernandez PL, de Oliveira RB, Golenbock DT, Zamboni DS, Bozza MT. Hemolysis-induced lethality involves inflammasome activation by heme. Proc Natl Acad Sci U S A. 2014, 111(39):E4110-4118.

[101] Ma B, Day JP, Phillips H, Slootsky B, Tolosano E, Dore S. Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. J Neuroinflammation. 2016, 13:26.

[102] Compan V, Baroja-Mazo A, Lopez-Castejon G, Gomez AI, Martinez CM, Angosto D, Montero MT, Herranz AS, Bazan E, Reimers D, Mulero V, Pelegrin P. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity. 2012, 37(3):487-500.

[103] Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS, Oh ES, Crosby G, Berger M, Eckenhoff RG, Nomenclature Consensus Working G. Recommendations for the Nomenclature of Cognitive Change Associated with Anaesthesia and Surgery-2018. Anesthesiology. 2018, 129(5):872-879.

[104] Subramaniyan S, Terrando N. Neuroinflammation and Perioperative Neurocognitive Disorders. Anesth Analg. 2019, 128(4):781-788.

[105] Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int J Mol Sci. 2019, 20(9).

[106] Deng X, Li M, Ai W, He L, Lu D, Patrylo PR, Cai H, Luo X, Li Z, Yan X. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. Adv Alzheimer Dis. 2014, 3(2):78-93.

[107] Gu SM, Park MH, Hwang CJ, Song HS, Lee US, Han SB, Oh KW, Ham YW, Song MJ, Son DJ, Hong JT. Bee venom ameliorates lipopolysaccharide-induced memory loss by preventing NF-kappaB pathway. J Neuroinflammation. 2015, 12:124.

[108] Lee YJ, Choi DY, Yun YP, Han SB, Kim HM, Lee K, Choi SH, Yang MP, Jeon HS, Jeong JH, Oh KW, Hong JT. Ethanol extract of Magnolia officinalis prevents lipopolysaccharide-induced memory deficiency via its antineuroinflammatory and antiamyloidogenic effects. Phytother Res. 2013, 27(3):438-447.

[109] Choi JY, Jang JS, Son DJ, Im HS, Kim JY, Park JE, Choi WR, Han SB, Hong JT. Antarctic Krill Oil Diet Protects against Lipopolysaccharide-Induced Oxidative Stress, Neuroinflammation and Cognitive Impairment. Int J Mol Sci. 2017, 18(12).

[110] Lee YJ, Choi DY, Choi IS, Kim KH, Kim YH, Kim HM, Lee K, Cho WG, Jung JK, Han SB, Han JY, Nam SY, Yun YW, Jeong JH, Oh KW, Hong JT. Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J Neuroinflammation. 2012, 9:35.

[111] Huang B, Liu J, Ju C, Yang D, Chen G, Xu S, Zeng Y, Yan X, Wang W, Liu D, Fu S. Licochalcone A Prevents the Loss of Dopaminergic Neurons by Inhibiting Microglial Activation in Lipopolysaccharide (LPS)-Induced Parkinson's Disease Models. Int J Mol Sci. 2017, 18(10).

[112] Huang B, Liu J, Meng T, Li Y, He D, Ran X, Chen G, Guo W, Kan X, Fu S, Wang W, Liu D. Polydatin Prevents Lipopolysaccharide (LPS)-Induced Parkinson's Disease via Regulation of the AKT/GSK3beta-Nrf2/NF-kappaB Signaling Axis. Front Immunol. 2018, 9:2527.

[113] Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, Knapp DJ, Crews FT. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007, 55(5):453-462.

[114] Hwang JS, Kim KH, Park J, Kim SM, Cho H, Lee Y, Han IO. Glucosamine improves survival in a mouse model of sepsis and attenuates sepsis-induced lung injury and inflammation. J Biol Chem. 2019, 294(2):608-622.

[115] Honda T, He Q, Wang F, Redington AN. Acute and chronic remote ischemic conditioning attenuate septic cardiomyopathy, improve cardiac output, protect systemic organs, and improve mortality in a lipopolysaccharide-induced sepsis model. Basic Res Cardiol. 2019, 114(3):15.

[116] Mokhtari-Zaer A, Hosseini M, Salmani H, Arab Z, Zareian P. Vitamin D3 attenuates lipopolysaccharide-induced cognitive impairment in rats by inhibiting inflammation and oxidative stress. Life Sci. 2020, 253:117703.

[117] Baluchnejadmojarad T, Zeinali H, Roghani M. Scutellarin alleviates lipopolysaccharide-induced cognitive deficits in the rat: Insights into underlying mechanisms. Int Immunopharmacol. 2018, 54:311-319.

[118] Mirahmadi SM, Shahmohammadi A, Rousta AM, Azadi MR, Fahanik-Babaei J, Baluchnejadmojarad T, Roghani M. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine. 2018, 104:151-159.

[119] Gao J, Xiong B, Zhang B, Li S, Huang N, Zhan G, Jiang R, Yang L, Wu Y, Miao L, Zhu B, Yang C, Luo A. Sulforaphane Alleviates Lipopolysaccharide-induced Spatial Learning and Memory Dysfunction in Mice: The Role of BDNF-mTOR Signaling Pathway. Neuroscience. 2018, 388:357-366.

[120] Zhang D, Li N, Wang Y, Lu W, Zhang Y, Chen Y, Deng X, Yu X. Methane ameliorates post-operative cognitive dysfunction by inhibiting microglia NF-kappaB/MAPKs pathway and promoting IL-10 expression in aged mice. Int Immunopharmacol. 2019, 71:52-60.

[121] Wang Z, Meng S, Cao L, Chen Y, Zuo Z, Peng S. Critical role of NLRP3-caspase-1 pathway in age-dependent isoflurane-induced microglial inflammatory response and cognitive impairment. J Neuroinflammation. 2018, 15(1):109.

[122] Fan Y, Du L, Fu Q, Zhou Z, Zhang J, Li G, Wu J. Inhibiting the NLRP3 Inflammasome With MCC950 Ameliorates Isoflurane-Induced Pyroptosis and Cognitive Impairment in Aged Mice. Front Cell Neurosci. 2018, 12:426.

[123] Ye JS, Chen L, Lu YY, Lei SQ, Peng M, Xia ZY. Honokiol-Mediated Mitophagy Ameliorates Postoperative Cognitive Impairment Induced by Surgery/Sevoflurane via Inhibiting the Activation of NLRP3 Inflammasome in the Hippocampus. Oxid Med Cell Longev. 2019, 2019:8639618.

[124] Fu Q, Li J, Qiu L, Ruan J, Mao M, Li S, Mao Q. Inhibiting NLRP3 inflammasome with MCC950 ameliorates perioperative neurocognitive disorders, suppressing neuroinflammation in the hippocampus in aged mice. Int Immunopharmacol. 2020, 82:106317.

[125] Zuo Y, Yin L, Cheng X, Li J, Wu H, Liu X, Gu E, Wu J. Elamipretide Attenuates Pyroptosis and Perioperative Neurocognitive Disorders in Aged Mice. Front Cell Neurosci. 2020, 14:251.

[126] Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications. Nat Rev Mol Cell Biol. 2020, 21(11):678-695.

[127] Huang C, Chu JM, Liu Y, Chang RC, Wong GT. Varenicline reduces DNA damage, tau mislocalization and post surgical cognitive impairment in aged mice. Neuropharmacology. 2018, 143:217-227.

[128] Yao M, Zhao Z, Wei L, Zhou D, Xue Z, Ge S. HSF1/HSP pathway in the hippocampus is involved in SIRT1-mediated caloric restriction-induced neuroprotection after surgery in aged mice. Exp Gerontol. 2019, 119:184-192.

[129] Snyder AG, Oberst A. The Antisocial Network: Cross Talk Between Cell Death Programs in Host Defense. Annu Rev Immunol. 2021.

[130] Man SM, Tourlomousis P, Hopkins L, Monie TP, Fitzgerald KA, Bryant CE. Salmonella infection induces recruitment of Caspase-8 to the inflammasome to modulate IL-1beta production. J Immunol. 2013, 191(10):5239-5246.

[131] Chung H, Vilaysane A, Lau A, Stahl M, Morampudi V, Bondzi-Simpson A, Platnich JM, Bracey NA, French MC, Beck PL, Chun J, Vallance BA, Muruve DA. NLRP3 regulates a non-canonical platform for caspase-8 activation during epithelial cell apoptosis. Cell Death Differ. 2016, 23(8):1331-1346.

[132] Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR, Poltorak A. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A. 2018, 115(46):E10888-E10897.

[133] Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 2018, 362(6418):1064-1069.

[134] Vince JE, De Nardo D, Gao W, Vince AJ, Hall C, McArthur K, Simpson D, Vijayaraj S, Lindqvist LM, Bouillet P, Rizzacasa MA, Man SM, Silke J, Masters SL, Lessene G, Huang DCS, Gray DHD, Kile BT, Shao F, Lawlor KE. The Mitochondrial Apoptotic Effectors BAX/BAK Activate Caspase-3 and -7 to Trigger NLRP3 Inflammasome and Caspase-8 Driven IL-1beta Activation. Cell Rep. 2018, 25(9):2339-2353 e2334.

[135] Mehan S, Meena H, Sharma D, Sankhla R. JNK: a stress-activated protein kinase therapeutic strategies and involvement in Alzheimer's and various neurodegenerative abnormalities. J Mol Neurosci. 2011, 43(3):376-390.

[136] Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS, Oh ES, Crosby G, Berger M, Eckenhoff RG, Nomenclature Consensus Working G. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. British journal of anaesthesia. 2018, 121(5):1005-1012.

[137] Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, Mark DB, Reves JG, Blumenthal JA, Neurological Outcome Research G, the Cardiothoracic Anesthesiology Research Endeavors I. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001, 344(6):395-402.

[138] Evered L, Scott DA, Silbert B, Maruff P. Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg. 2011, 112(5):1179-1185.

[139] Mahanna-Gabrielli E, Schenning KJ, Eriksson LI, Browndyke JN, Wright CB, Culley DJ, Evered L, Scott DA, Wang NY, Brown CHt, Oh E, Purdon P, Inouye S, Berger M, Whittington RA, Price CC, Deiner S. State of the clinical science of perioperative brain health: report from the American Society of Anesthesiologists Brain Health Initiative Summit 2018. British journal of anaesthesia. 2019, 123(4):464-478.

[140] Steinmetz J, Christensen KB, Lund T, Lohse N, Rasmussen LS, Group I. Long-term consequences of postoperative cognitive dysfunction. Anesthesiology. 2009, 110(3):548-555.

[141] Eckenhoff RG, Maze M, Xie Z, Culley DJ, Goodlin SJ, Zuo Z, Wei H, Whittington RA, Terrando N, Orser BA, Eckenhoff MF. Perioperative Neurocognitive Disorder: State of the Preclinical Science. Anesthesiology. 2020, 132(1):55-68.

[142] Mi X, Cao Y, Li Y, Li Y, Hong J, He J, Liang Y, Yang N, Liu T, Han D, Kuang C, Han Y, Zhou Y, Liu Y, Shi C, Guo X, Li Z. The Non-peptide Angiotensin-(1-7) Mimic AVE 0991 Attenuates Delayed Neurocognitive Recovery After Laparotomy by Reducing Neuroinflammation and Restoring Blood-Brain Barrier Integrity in Aged Rats. Front Aging Neurosci. 2021, 13:624387.

[143] Wang HL, Liu H, Xue ZG, Liao QW, Fang H. Minocycline attenuates post-operative cognitive impairment in aged mice by inhibiting microglia activation. J Cell Mol Med. 2016, 20(9):1632-1639.

[144] He Y, Hara H, Nunez G. Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci. 2016, 41(12):1012-1021.

[145] Lu F, Lan Z, Xin Z, He C, Guo Z, Xia X, Hu T. Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. J Cell Physiol. 2020, 235(4):3207-3221.

[146] McKenzie BA, Dixit VM, Power C. Fiery Cell Death: Pyroptosis in the Central Nervous System. Trends Neurosci. 2020, 43(1):55-73.

[147] Bredesen DE, Rao RV, Mehlen P. Cell death in the nervous system. Nature. 2006, 443(7113):796-802.

[148] Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev. 2012, 92(2):689-737.

[149] Kim EK, Choi EJ. Compromised MAPK signaling in human diseases: an update. Arch Toxicol. 2015, 89(6):867-882.

[150] Sclip A, Antoniou X, Colombo A, Camici GG, Pozzi L, Cardinetti D, Feligioni M, Veglianese P, Bahlmann FH, Cervo L, Balducci C, Costa C, Tozzi A, Calabresi P, Forloni G, Borsello T. c-Jun N-terminal kinase regulates soluble Abeta oligomers and cognitive impairment in AD mouse model. J Biol Chem. 2011, 286(51):43871-43880.

[151] Zhang Y, Meng Q, Yin J, Zhang Z, Bao H, Wang X. Anthocyanins attenuate neuroinflammation through the suppression of MLK3 activation in a mouse model of perioperative neurocognitive disorders. Brain Res. 2020, 1726:146504.

[152] Fann DY, Lim YA, Cheng YL, Lok KZ, Chunduri P, Baik SH, Drummond GR, Dheen ST, Sobey CG, Jo DG, Chen CL, Arumugam TV. Evidence that NF-kappaB and MAPK Signaling Promotes NLRP Inflammasome Activation in Neurons Following Ischemic Stroke. Mol Neurobiol. 2018, 55(2):1082-1096.

[153] An Y, Zhang H, Wang C, Jiao F, Xu H, Wang X, Luan W, Ma F, Ni L, Tang X, Liu M, Guo W, Yu L. Activation of ROS/MAPKs/NF-kappaB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. FASEB J. 2019, 33(11):12515-12527.

[154] Chung W, Ryu MJ, Heo JY, Lee S, Yoon S, Park H, Park S, Kim Y, Kim YH, Yoon SH, Shin YS, Lee WH, Ju X, Kweon GR, Ko Y. Sevoflurane Exposure during the Critical Period Affects Synaptic Transmission and Mitochondrial Respiration but Not Long-term Behavior in Mice. Anesthesiology. 2017, 126(2):288-299.

[155] Han D, Li Z, Liu T, Yang N, Li Y, He J, Qian M, Kuang Z, Zhang W, Ni C, Guo X. Prebiotics Regulation of Intestinal Microbiota Attenuates Cognitive Dysfunction Induced by Surgery Stimulation in APP/PS1 Mice. Aging Dis. 2020, 11(5):1029-1045.

[156] Barrientos RM, Hein AM, Frank MG, Watkins LR, Maier SF. Intracisternal interleukin-1 receptor antagonist prevents postoperative cognitive decline and neuroinflammatory response in aged rats. J Neurosci. 2012, 32(42):14641-14648.

[157] Wu Y, Dou J, Wan X, Leng Y, Liu X, Chen L, Shen Q, Zhao B, Meng Q, Hou J. Histone Deacetylase Inhibitor MS-275 Alleviates Postoperative Cognitive Dysfunction in Rats by Inhibiting Hippocampal Neuroinflammation. Neuroscience. 2019, 417:70-80.

[158] Yang N, Li Z, Han D, Mi X, Tian M, Liu T, Li Y, He J, Kuang C, Cao Y, Li L, Ni C, Wang JQ, Guo X. Autophagy prevents hippocampal alpha-synuclein oligomerization and early cognitive dysfunction after anesthesia/surgery in aged rats. Aging (Albany N Y). 2020, 12(8):7262-7281.

[159] Sun L, Dong R, Xu X, Yang X, Peng M. Activation of cannabinoid receptor type 2 attenuates surgery-induced cognitive impairment in mice through anti-inflammatory activity. J Neuroinflammation. 2017, 14(1):138.

[160] Sun YB, Zhao H, Mu DL, Zhang W, Cui J, Wu L, Alam A, Wang DX, Ma D. Dexmedetomidine inhibits astrocyte pyroptosis and subsequently protects the brain in in vitro and in vivo models of sepsis. Cell Death Dis. 2019, 10(3):167.

[161] Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014, 17(1):131-143.

[162] Hickman SE, Kingery ND, Ohsumi TK, Borowsky ML, Wang LC, Means TK, El Khoury J. The microglial sensome revealed by direct RNA sequencing. Nat Neurosci. 2013, 16(12):1896-1905.

[163] Xu X, Zhang Q, Tian X, Wang G. Sevoflurane anesthesia induces neither contextual fear memory impairment nor alterations in local population connectivity of medial prefrontal cortex local field potentials networks in aged rats. Fundam Clin Pharmacol. 2016, 30(4):338-346.

[164] Deiner S, Baxter MG, Mincer JS, Sano M, Hall J, Mohammed I, O'Bryant S, Zetterberg H, Blennow K, Eckenhoff R. Human plasma biomarker responses to inhalational general anaesthesia without surgery. British journal of anaesthesia. 2020, 125(3):282-290.

[165] Callaway JK, Jones NC, Royse AG, Royse CF. Sevoflurane anesthesia does not impair acquisition learning or memory in the Morris water maze in young adult and aged rats. Anesthesiology. 2012, 117(5):1091-1101.

[166] Rundshagen I. Postoperative cognitive dysfunction. Dtsch Arztebl Int. 2014, 111(8):119-125.

[167] Shansky RM. Are hormones a "female problem" for animal research? Science. 2019, 364(6443):825-826.

[168] Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, Bagriyanik A, Genc K, Genc S. Melatonin Attenuates LPS-Induced Acute Depressive-Like Behaviors and Microglial NLRP3 Inflammasome Activation Through the SIRT1/Nrf2 Pathway. Front Immunol. 2019, 10:1511.

[169] He W, Long T, Pan Q, Zhang S, Zhang Y, Zhang D, Qin G, Chen L, Zhou J. Microglial NLRP3 inflammasome activation mediates IL-1beta release and contributes to central sensitization in a recurrent nitroglycerin-induced migraine model. J Neuroinflammation. 2019, 16(1):78.

[170] Xu P, Zhang X, Liu Q, Xie Y, Shi X, Chen J, Li Y, Guo H, Sun R, Hong Y, Liu X, Xu G. Microglial TREM-1 receptor mediates neuroinflammatory injury via interaction with SYK in experimental ischemic stroke. Cell Death Dis. 2019, 10(8):555.

[171] Yang T, Velagapudi R, Terrando N. Neuroinflammation after surgery: from mechanisms to therapeutic targets. Nat Immunol. 2020, 21(11):1319-1326.

[172] Prieto GA, Cotman CW. Cytokines and cytokine networks target neurons to modulate long-term potentiation. Cytokine Growth Factor Rev. 2017, 34:27-33.

[173] York EM, Zhang J, Choi HB, MacVicar BA. Neuroinflammatory inhibition of synaptic long-term potentiation requires immunometabolic reprogramming of microglia. Glia. 2021, 69(3):567-578.

[174] Ye JS, Chen L, Lu YY, Lei SQ, Peng M, Xia ZY. SIRT3 activator honokiol ameliorates surgery/anesthesia-induced cognitive decline in mice through anti-oxidative stress and anti-inflammatory in hippocampus. CNS Neurosci Ther. 2019, 25(3):355-366.

[175] Zhang X, Dong H, Li N, Zhang S, Sun J, Zhang S, Qian Y. Activated brain mast cells contribute to postoperative cognitive dysfunction by evoking microglia activation and neuronal apoptosis. J Neuroinflammation. 2016, 13(1):127.

[176] Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003, 100(23):13632-13637.

[177] Cibelli M, Fidalgo AR, Terrando N, Ma D, Monaco C, Feldmann M, Takata M, Lever IJ, Nanchahal J, Fanselow MS, Maze M. Role of interleukin-1beta in postoperative cognitive dysfunction. Ann Neurol. 2010, 68(3):360-368.

[178] Yatsiv I, Morganti-Kossmann MC, Perez D, Dinarello CA, Novick D, Rubinstein M, Otto VI, Rancan M, Kossmann T, Redaelli CA, Trentz O, Shohami E, Stahel PF. Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18-binding protein after experimental closed head injury. J Cereb Blood Flow Metab. 2002, 22(8):971-978.

[179] Fan W, Mai L, Zhu X, Huang F, He H. The Role of Microglia in Perioperative Neurocognitive Disorders. Front Cell Neurosci. 2020, 14:261.

[180] Huang MY, Tu CE, Wang SC, Hung YL, Su CC, Fang SH, Chen CS, Liu PL, Cheng WC, Huang YW, Li CY. Corylin inhibits LPS-induced inflammatory response and attenuates the activation of NLRP3 inflammasome in microglia. BMC Complement Altern Med. 2018, 18(1):221.

[181] Wei Y, Chen J, Hu Y, Lu W, Zhang X, Wang R, Chu K. Rosmarinic Acid Mitigates Lipopolysaccharide-Induced Neuroinflammatory Responses through the Inhibition of TLR4 and CD14 Expression and NF-kappaB and NLRP3 Inflammasome Activation. Inflammation. 2018, 41(2):732-740.

[182] Ahmed T, Zulfiqar A, Arguelles S, Rasekhian M, Nabavi SF, Silva AS, Nabavi SM. Map kinase signaling as therapeutic target for neurodegeneration. Pharmacol Res. 2020, 160:105090.

[183] Kaminska B, Gozdz A, Zawadzka M, Ellert-Miklaszewska A, Lipko M. MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat Rec (Hoboken). 2009, 292(12):1902-1913.

[184] Ding Y, Shi C, Chen L, Ma P, Li K, Jin J, Zhang Q, Li A. Effects of andrographolide on postoperative cognitive dysfunction and the association with NF-kappaB/MAPK pathway. Oncol Lett. 2017, 14(6):7367-7373.

[185] Rehman SU, Ahmad A, Yoon GH, Khan M, Abid MN, Kim MO. Inhibition of c-Jun N-Terminal Kinase Protects Against Brain Damage and Improves Learning and Memory After Traumatic Brain Injury in Adult Mice. Cereb Cortex. 2018, 28(8):2854-2872.

[186] Chu X, Wang C, Wu Z, Fan L, Tao C, Lin J, Chen S, Lin Y, Ge Y. JNK/c-Jun-driven NLRP3 inflammasome activation in microglia contributed to retinal ganglion cells degeneration induced by indirect traumatic optic neuropathy. Exp Eye Res. 2020:108335.

[187] Cao G, Jiang N, Hu Y, Zhang Y, Wang G, Yin M, Ma X, Zhou K, Qi J, Yu B, Kou J. Ruscogenin Attenuates Cerebral Ischemia-Induced Blood-Brain Barrier Dysfunction by Suppressing TXNIP/NLRP3 Inflammasome Activation and the MAPK Pathway. Int J Mol Sci. 2016, 17(9).

[188] Su WJ, Zhang Y, Chen Y, Gong H, Lian YJ, Peng W, Liu YZ, Wang YX, You ZL, Feng SJ, Zong Y, Lu GC, Jiang CL. NLRP3 gene knockout blocks NF-kappaB and MAPK signaling pathway in CUMS-induced depression mouse model. Behav Brain Res. 2017, 322(Pt A):1-8.

[189] Posfai B, Cserep C, Orsolits B, Denes A. New Insights into Microglia-Neuron Interactions: A Neuron's Perspective. Neuroscience. 2019, 405:103-117.

[190] Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and Aging: The Role of the TREM2-DAP12 and CX3CL1-CX3CR1 Axes. Int J Mol Sci. 2018, 19(1).

[191] Diaz-Aparicio I, Paris I, Sierra-Torre V, Plaza-Zabala A, Rodriguez-Iglesias N, Marquez-Ropero M, Beccari S, Huguet P, Abiega O, Alberdi E, Matute C, Bernales I, Schulz A, Otrokocsi L, Sperlagh B, Happonen KE, Lemke G, Maletic-Savatic M, Valero J, Sierra A. Microglia Actively Remodel Adult Hippocampal Neurogenesis through the Phagocytosis Secretome. J Neurosci. 2020, 40(7):1453-1482.

[192] Kato G, Inada H, Wake H, Akiyoshi R, Miyamoto A, Eto K, Ishikawa T, Moorhouse AJ, Strassman AM, Nabekura J. Microglial Contact Prevents Excess Depolarization and Rescues Neurons from Excitotoxicity. eNeuro. 2016, 3(3).

[193] Hewett SJ, Jackman NA, Claycomb RJ. Interleukin-1beta in Central Nervous System Injury and Repair. Eur J Neurodegener Dis. 2012, 1(2):195-211.

[194] Rizzo FR, Musella A, De Vito F, Fresegna D, Bullitta S, Vanni V, Guadalupi L, Stampanoni Bassi M, Buttari F, Mandolesi G, Centonze D, Gentile A. Tumor Necrosis Factor and Interleukin-1beta Modulate Synaptic Plasticity during Neuroinflammation. Neural Plast. 2018, 2018:8430123.

分类号:

 R614.1    

馆藏位置:

 医临时馆    

开放日期:

 2024-03-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式