- 无标题文档
查看论文信息

论文题名(中文):

 结核分枝杆菌特异性抗原的制备及应用研究    

作者:

 杨晰朦    

学号:

 S1811221001    

论文语种:

 chi    

学科名称:

 医学 - 基础医学(可授医学、理学学位) - 病原生物学    

学生类型:

 硕士    

学校:

 北京大学医学部    

院系:

 基础医学院    

专业:

 病原生物学    

第一导师姓名:

 陈香梅    

论文完成日期:

 2020-03-30    

论文答辩日期:

 2020-07-08    

论文题名(外文):

 PRODUCTION AND APPLICATION RESEARCH OF MYCOBACTERIUM TUBERCULOSIS SPECIFIC ANTIGEN    

关键词(中文):

 结核分枝杆菌 ; 结核菌素皮试试验 ; ESAT6-CFP10 ; Rv2654c ; Rv2645    

关键词(外文):

 Mycobacterium tuberculosis ; Tuberculin skin test ; ESAT6-CFP10 ; Rv2654c ; Rv2645    

论文文摘(中文):

背景与目的:结核病(tuberculosis,TB)是由结核分枝杆菌(mycobacterium tuberculosis,MTB)感染所引起的传染性疾病。近年来,随着耐药性结核(drug resistant TB,DR-TB)的流行以及MTB与HIV共感染的情况逐年增加,尤其是缺少对活动性结核和MTB潜伏感染(latent mycobacterium tuberculosis infections,LTBI)敏感特异的诊断方法,进一步增加了TB的防控难度。如何实现对TB的早期诊断、规范治疗以及控制DR-TB,仍是全球TB预防与控制研究中的热点和难点问题。结核菌素皮肤试验(tuberculin skin test,TST)是目前应用最广的一种细胞免疫诊断方法,但其检测结果存在较高的假阳性率,亟需寻找新的MTB特异性抗原用于TST检测。培养滤液蛋白10(culture filtrate protein,CFP10)、早期分泌性抗原性靶蛋白6(early secreting antigen target 6,ESAT6)、Rv2654c和Rv2645蛋白是近年来所发现的在人致病MTB菌株表达的特异蛋白,而在卡介苗(Bacillus Calmette-Guérin,BCG)菌株中不表达,但上述优势抗原在TST检测中的应用价值尚未明确。

材料与方法:采用基因工程技术分别构建含MTB的ESAT6-CFP10(rEC)、Rv2654c及Rv2645基因的pET-28a重组表达质粒,并用限制性内切酶酶切和直接测序的方法,确定重组质粒序列正确。将rEC、Rv2654c及Rv2645重组质粒转化入大肠杆菌BL21(DE3)中,通过表达条件优化,确定以0.1 mmol/L IPTG、30℃条件诱导重组蛋白表达,并采用亲和Ni 柱层析、阴离子交换CaptoQ层析、分子筛Superdex 200层析等方法纯化重组蛋白。通过Western blot及质谱验证目标蛋白的正确性。以结核菌素纯蛋白衍生物(purified protein derivative of tuberculin,TB-PPD)作为参考对重组蛋白进行效力测定。并构建MTB活菌、MTB灭活菌体及BCG致敏的DTH豚鼠模型,以TB-PPD作为阳性对照,将重组蛋白rEC、Rv2654c、Rv2645单一或联合注射于三组豚鼠模型皮内,于注射后12、24、48 h记录局部红晕/硬结的横、纵直径,分别将12~24 h、24~48 h直径平均值进行比较分析,评估DTH强度。同时将重组蛋白诱导三组致敏豚鼠的DTH结果与TB-PPD的结果进行比较。

研究结果:经双酶切、琼脂糖凝胶电泳及测序鉴定,结果显示pET-28a重组表达质粒中rEC、Rv2654c、Rv2645基因序列与已知目的基因序列一致,重组表达质粒构建成功。将上述重组质粒转化至大肠杆菌BL21(DE3)中并对其进行优化诱导表达,经SDS-PAGE凝胶电泳分析,结果表明各重组蛋白均以可溶性蛋白形式表达。经亲和Ni 柱层析、阴离子交换层析、分子筛层析等方法,分别获得高纯度重组蛋白rEC、Rv2654c、Rv2645(纯度>95%);Western Blot实验证实rEC、Rv2654c、Rv2645蛋白均与预期分子量26.5 kDa、6.5 kDa、16.7 kDa一致,蛋白质谱分析结果表明重组蛋白序列正确。重组蛋白效力测定结果表明,5.0 μg/mL rEC、10.0 μg/mL Rv2654c、10.0 μg/mL Rv2645的重组蛋白与1.0 μg/mL TB-PPD的皮试结果基本一致。免疫功能实验结果发现,在重组蛋白诱导MTB活菌致敏豚鼠的DTH试验中,rEC(5.0 μg/mL)、Rv2654c(10.0 μg/mL)、Rv2645(10.0 μg/mL)以及[rEC(3.3 μg/mL)+Rv2654c(3.3 μg/mL)+Rv2645(3.3 μg/mL)]诱导产生的红晕/硬结,12~24 h的直径平均值分别为12.3mm、11.8mm、12.3mm、15.8mm,24~48 h的直径平均值分别为9.3mm、8.8mm、8.7mm、13.0mm,结果均为阳性(≥5 mm);无论三种重组蛋白单一还是联合诱导MTB活菌致敏豚鼠,所产生的红晕/硬结在12~24 h的直径平均值均大于24~48 h,差异均具有统计学意义(P <0.0001);此外,三种重组蛋白联合诱导在12~24 h产生的红晕/硬结的直径平均值大于单一蛋白,差异具有统计学意义(P=0.0005、P=0.0012、P=0.0149);三种重组蛋白联合诱导24~48 h红晕/硬结的直径平均值大于单一蛋白,差异具有统计学意义(P=0.0014、P=0.0005、P=0.0067)。三种重组蛋白单一和联合所诱导的MTB灭活菌菌体或BCG致敏豚鼠的皮肤反应均为阴性,重组蛋白诱导MTB活菌、MTB灭活菌体和BCG致敏豚鼠的DTH数据有显著性差异(P值均<0.0001);而TB-PPD所诱导的不同结核分枝杆菌致敏豚鼠的DTH反应均为阳性。

结论:本研究成功获得纯化的rEC、Rv2654c、Rv2645重组蛋白,并对重组蛋白进行效力测定;重组蛋白单一和联合诱导MTB活菌致敏豚鼠的DTH反应在12~24 h所产生的红晕或硬结均较24~48 h更明显,且重组蛋白联合使用比任何一种蛋白单独使用的灵敏性更高;重组蛋白单一和联合使用均可鉴别MTB感染、MTB灭活菌体及BCG致敏豚鼠,重组蛋白与TB-PPD相比具有更好的特异性。

文摘(外文):

Background and objective: Tuberculosis (TB) is a chronic infectious disease caused by mycobacterium tuberculosis (MTB) infection. In recent years, with the prevalence of drug-resistant TB (DR-TB) and the increase of of MTB and HIV coinfection, particular, especially the lack of specific and sensitive diagnostic methods for latent tuberculosis and latent MTB infection (LTBI) further,  the prevention and control of TB becomes more and more difficult. How to achieve the early diagnosis, standard treatment and control of drug-resistant TB is still a hot and difficult issue in the global TB prevention and control research. Tuberculin skin test (TST) is the most widely used cellular immune diagnosis method at present, but its detection results have a high false positive rate, so it is urgent to find a new MTB specific antigen for TST detection. Culture filtrate protein (CFP10), early secreting antigen target 6 (ESAT6), Rv2654c and Rv2645 are specific proteins that have been discovered to be expressed in human pathogenic MTB strains in recent years, but they are not expressed in BCG strain. To date, the application value of the above dominant antigens in the diagnosis of TST is still unclear.

Materials and methods: The recombinant expression plasmids of esat6-cfp10 (rEC), Rv2654c and Rv2645 were constructed by genetic engineering technology, and the sequences of the recombinant plasmids were determined by restriction endonuclease digestion and direct sequencing. rEC, Rv2654c and Rv2645 recombinant expression plasmids were transformed into strain BL21 (DE3) of E. coli. The expression conditions of recombinant protein were optimized. The recombinant protein was purified by affinity Ni column chromatography, anion exchange CaptoQ chromatography and molecular sieve Superdex 200 chromatography, and verified by Western blot and mass spectrometry. TB-PPD was used as the reference to determine the efficacy of the recombinant protein. The DTH guinea pig model with live MTB, killed MTB and BCG sensitization was constructed. Tuberculin pure protein derivative (TB-PPD) was used as a positive control. Recombinant protein rEC, Rv2654c and Rv2645 were injected into three groups of guinea pig models by single or combined injection, and the horizontal and vertical diameters of local redness/induration were recorded at 12, 24 and 48 hours after injection, and the mean diameters at 12 to 24 hours and 24 to 48 hours were compared and analyzed to evaluate DTH intensity.

Results: After double enzyme digestion, agarose gel electrophoresis and DNA sequencing, the gene sequences of rEC, Rv2654c and Rv2645 in the pet-28a recombinant expression plasmids were consistent with the known sequences of target genes, demonstrated that the recombinant expression plasmids were successfully constructed. The recombinant plasmids were transformed into E. coli BL21 (DE3) and the optimized eapression conditions included growth until an absorbance of 0.6~0.8 (measured at 600 nm) with 0.1mmol /L IPTG and 30℃. SDS-PAGE gel electrophoresis showed that all recombinant proteins were expressed in the form of soluble proteins. High purity recombinant protein rEC, Rv2654c and Rv2645 (purity > 95%) were obtained by affinity Ni column chromatography, anion exchange chromatography and molecular sieve chromatography. Western Blot assay confirmed that the rEC, Rv2654c and Rv2645 proteins were consistent with the expected molecular weight of 26.5 kda, 6.5 kda and 16.7 kda, respectively. The protein spectrum analysis showed that the recombinant protein sequences were correct. The results of the determination of recombinant protein potency showed that the recombinant proteins of 5.0 μg/mL rEC, 10.0 μg/mL Rv2654c and 10.0 μg/mL Rv2645 were basically consistent with the results of the skin test of 1.0 μg/mL TB-PPD. The results of the immune function experiment showed that in the DTH test of guinea pigs sensitized by live MTB induced by recombinant protein, the average diameter of rEC(5.0 μg/mL), Rv2654c(10.0 μg/mL), Rv2645(10.0 μg/mL) and [rEC(3.3 μg/mL)+Rv2654c(3.3 μg/mL)+Rv2645(3.3 μg/mL)] were 12.3mm, 11.8mm, 12.3mm and 15.8mm, respectively, from 12 to 24 hours.The average diameters generated from 24 to 48 hours were 9.3mm, 8.8mm, 8.7 mm and 13.0mm, respectively. The results of the skin tests induced by recombinant proteins were all positive (≥5mm). No matter whether the three recombinant proteins were single or combined to induce live MTB sensitized guinea pigs, the average diameter of the resulting redness/indentation at 12-24 hours was greater than that at 24-48 hours, and the differences were statistically significant (P < 0.0001). In addition, the average diameter of the redness/indentation induced by the combination of the three recombinant proteins at 12-24 hours was greater than that of the single protein, and the differences were statistically significant (P=0.0005, P=0.0012, P=0.0149). In addition, the mean diameter of redness/indentation induced by the combination of the three recombinant proteins for 24 -48 hours was greater than that of the single protein, and the difference was statistically significant (P=0.0014, P=0.0005, P=0.0067). However, in the DTH test of guinea pigs sensitized by killed MTB or BCG, the skin reactions induce by single recombinant protein or combination of the three recombinant proteins were all negative. There were significant differences in the DTH data of recombinant protein-induced live MTB, killed MTB and BCG sensitized guinea pigs (all P values < 0.0001). While the DTH responses of guinea pigs sensitized by different mycobacterium tuberculosis induced by TB-PPD were all positive and there were no differences in the DTH data of TB-PPD -induced live MTB, killed MTB and BCG sensitized guinea pigs.

Conclusions: Our results showed that rEC, Rv2654c and Rv2645 recombinant proteins were successfully expressed and purified. The potency of these recombinant proteins was determined. The DTH response of guinea pigs sensitized by live MTB induced by single or combined use of three kinds of recombinant proteins was more obvious at 12~24 h than at 24~48 h. The combined use of recombinant proteins was more sensitive than that of any single protein. Single and combined use of recombinant proteins can identify live MTB, killed MTB and BCG sensitized guinea pigs. Compared with TB-PPD, recombinant proteins have better specificity.

论文目录:
缩略词表 1
第一章 引言 3
第二章 综述 6
2.1 结核病的流行及危害 6
2.2 结核分枝杆菌的病原学 8
2.2.1 结核分枝杆菌的形态结构及菌体成分 8
2.2.2 结核分枝杆菌的基因组结构 9
2.3 结核分枝杆菌的致病性和免疫性 10
2.3.1 结核分枝杆菌的致病性 10
2.3.2 结核分枝杆菌的易感人群 11
2.3.3 结核分枝杆菌的感染类型 12
2.3.4 结核分枝杆菌感染的结局 12
2.3.5 抗结核分枝杆菌的免疫机制 13
2.3.6 结核分枝杆菌的超敏反应 14
2.4 结核病的诊断方法 15
2.4.1 胸部X射线 16
2.4.2 细菌学诊断 17
2.4.3 免疫学诊断 18
2.5 结核分枝杆菌诊断优势抗原的研究进展 22
2.6 展望 24
第三章 材料与方法 26
3.1 实验材料 26
3.1.1 基因合成 26
3.1.2 菌株和质粒 26
3.1.3 实验动物 27
3.1.4 实验试剂 27
3.2 仪器设备 28
3.3 试剂配制 29
3.4 实验方法 31
3.4.1 重组质粒的构建及鉴定 31
3.4.2 目的蛋白的原核表达 33
3.4.3 重组蛋白的纯化和理化性质测定 36
3.4.4 重组蛋白效力评价及免疫功能研究 39
3.5 数据分析 42
第四章 结果 43
4.1 结核分枝杆菌重组蛋白的表达及纯化 43
4.1.1 重组质粒的鉴定 43
4.1.2 重组蛋白的诱导表达 45
4.1.3 重组蛋白的表达条件优化 45
4.1.4 重组蛋白的纯化 50
4.2 重组蛋白的鉴定 52
4.2.1 Western Blot检测 52
4.2.2 质谱分析 52
4.3 重组蛋白诱导结核分枝杆菌活菌致敏豚鼠的效力评价 54
4.4 重组蛋白免疫功能研究 56
4.4.1 重组蛋白对MTB活菌致敏豚鼠的DTH试验结果呈阳性 56
4.4.2 重组蛋白对MTB灭活菌体免疫豚鼠的DTH试验结果呈阴性 58
4.4.3 重组蛋白对BCG致敏豚鼠的DTH试验结果呈阴性 59
4.4.4 重组蛋白和TB-PPD诱导不同分枝杆菌免疫豚鼠的DTH结果比较 60
第五章 讨论 62
第六章 结论 65
参考文献 66
致谢 75
北京大学学位论文原创性声明和使用授权说明 76
学位论文答辩委员会名单 77
个人简历、在学期间发表的学术论文与研究成果 78

参考文献:

[1] World Health Organization (WHO).Global tuberculosis report. Geneva: WHO. 2019

[2] World Health Organization. Implementing the END-TB strategy: the essentials. Geneva: WHO. 2015

[3] World Health Organization. Guidelines on the management of latent tuberculosis infection. Geneva: WHO.2015

[4] World Health Organization. Latent tuberculosis infection: Updated and consolidated guidelines for programmatic management. Geneva: WHO.2018

[5] S-T Cole, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon S-V, Eiglmeier K, Gas S, Barry C-E, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, J. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537-544

[6] 李亮,许绍发. 中国结核病诊疗现状及展望. 中国实用内科杂志.2015, (08): 643-646

[7] Sollai S,Galli L,de Martino M,Chiappini E. Systematic review and meta-analysis on the utility of Interferon-gamma release assays for the diagnosis of Mycobacterium tuberculosis infection in children: a 2013 update. BMC Infect Dis. 2014;14 Suppl 1:S6.doi:10.1186/1471-2334-14-S1-S6

[8] Chen Yanqing, Haiqin Jiang, Wenyue Zhang, Zhiming Chen, Youming Mei, Hao Chen, Ying Shi, Wei Gao, Lei Wang, Santosh Chokkakula, Hongsheng Wang. Diagnostic Value of T-SPOT.TB Test in Cutaneous Mycobacterial Infections.[J]. Acta dermato-venereologica, 2018

[9] 蒲江,陶立峰,邓海清,王德海. 重组结核分枝杆菌ESAT6-CFP10蛋白对不同分枝杆菌致敏豚鼠的皮试反应研究. 中国防痨杂志, 2012, (10): 676-680

[10] Hasan Zahra, Bushra Jamil, Mussarat Ashraf, Muniba Islam, Maqboola Dojki, Muhammad Irfan, Rabia Hussain. Differential live Mycobacterium tuberculosis-, M. bovis BCG-, recombinant ESAT6-, and culture filtrate protein 10-induced immunity in tuberculosis. Clin Vaccine Immunol. 2009 Jul; 16(7): 991-998

[11] World Health Organization..Diagnosis evaluation series No.2:laboratory-based evaluation of 19commercially available rapid diagnostic tests for tuberculosis. Geneva: WHO. 2008

[12] Lewinsohn-David M, K Leonard-Michael, A LoBue-Philip, L Cohn-David, L Daley-Charles, Ed Desmond, Joseph Keane, A Lewinsohn-Deborah, M Loeffler-Ann, H Mazurek-Gerald, J O'Brien-Richard, Madhukar Pai, Luca Richeldi, Max Salfinger, M Shinnick-Thomas, R Sterling-Timothy, M Warshauer-David, L Woods-Gail. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin Infect Dis. 2017 Jan 15; 64(2): 111-115

[13] 宋韬,李莉娟,付洪义,白洪忠,康冠楠,侯莉莉,马清艳. 结核感染T细胞斑点试验在肺结核合并艾滋病患者中的诊断和影响分析. 中国临床医生杂志.2019, (12): 1429-1432

[14] Yun-Jae Won, Hae-Sun Chung, Won-Jung Koh, Ryeon Chung-Doo, Yae-Jean Kim, Eun-Suk Kang. Significant reduction in rate of indeterminate results of the QuantiFERON-TB Gold In-Tube test by shortening incubation delay. J Clin Microbiol. 2014 Jan; 52(1): 90-94

[15] Stanley-Sarah A, Sridharan Raghavan, W Hwang-William, S Cox-Jeffery. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A. 2003 Oct 28; 100(22): 13001-13006

[16] World Health Organization.Global tuberculosis control:surveillance,planning.Financing:WHO report 2008. Geneva:WHO.2008

[17] Tan Tracy, L Lee-Warren, C Alexander-David, Sergio Grinstein, Jun Liu. The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cell Microbiol. 2006;8(9):1417-1429

[18] Aagaard-Claus Sindbjerg, Thanh Hoang-Truc-Thi-Kim, Carina Vingsbo-Lundberg, Jes Dietrich, Peter Andersen. Quality and vaccine efficacy of CD4+ T cell responses directed to dominant and subdominant epitopes in ESAT-6 from Mycobacterium tuberculosis. J Immunol. 2009;183(4):2659-2668

[19] Schaible-U E, L Collins-H, H Kaufmann-S. Confrontation between intracellular bacteria and the immune system. Adv Immunol. 1999;71:267-377

[20] 吴守芝,宋俊峰. 结核分支杆菌致病机制与免疫. 中华结核和呼吸杂志. 2003, (02): 40-42.

[21] Aagaard Claus, Inger Brock, Anja Olsen, M Ottenhoff-Tom-H, Karin Weldingh, Peter Andersen. Mapping immune reactivity toward Rv2653 and Rv2654: two novel low-molecular-mass antigens found specifically in the Mycobacterium tuberculosis complex. J Infect Dis. 2004;189(5):812-819

[22] Horvati Kata, Szilvia B?sze, P Gideon-Hannah, Bernadett Bacsa, G Szabó-Tamás, Rene Goliath, X Rangaka-Molebogeng, Ferenc Hudecz, J Wilkinson-Robert, A Wilkinson-Katalin. Population tailored modification of tuberculosis specific interferon-gamma release assay. J Infect. 2016;72(2):179-188

[23] Luo Wei, Zilu Qu, Lingyun Zhang, Yan Xie, Fengling Luo, Yang Tan, Qin Pan, Xiao-Lian Zhang. Recombinant BCG::Rv2645 elicits enhanced protective immunity compared to BCG in vivo with induced ISGylation-related genes and Th1 and Th17 responses. Vaccine vol. 36,21 (2018): 2998-3009

[24] Wang Y, B Lu, J Liu, T Xiao, K Wan, C Guan. A multicenter clinical evaluation of Mycobacterium tuberculosis IgG/IgM antibody detection using the colloidal gold method. Eur J Clin Microbiol Infect Dis. 2014;33(11):1989-1994

[25] 柳晓金,李蓓蕾,高艳军,张珣,郑浩,郑立恒. 3种实验室诊断方法在肺结核诊断中的应用价值分析. 医学动物防制. 2020, (01): 97-99

[26] Alain Fischer, Provot Johan, Jais Jean-Philippe, Alcais Alexandre, Mahlaoui Nizar, 彭琳一,张奉春. 原发性免疫缺陷病易发生自身免疫病和炎症表现. 中华临床免疫和变态反应杂志. 2018, (02): 230-235

[27] Behr-M A, A Wilson-M, P Gill-W, H Salamon, K Schoolnik-G, S Rane, M Small-P. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science. 1999;284(5419):1520‐1523

[28] 彭哲, 朱朝敏. 结核分枝杆菌RD1区研究进展. 重庆医学. 2011, (01): 89-91

[29] Renshaw-Philip S, Parthena Panagiotidou, Adam Whelan, V Gordon-Stephen, Glyn Hewinson-R, A Williamson-Richard, D Carr-Mark. Conclusive evidence that the major T-cell antigens of the Mycobacterium tuberculosis complex ESAT-6 and CFP-10 form a tight, 1:1 complex and characterization of the structural properties of ESAT-6, CFP-10, and the ESAT-6*CFP-10 complex. Implications for pathogenesis and virulence. J Biol Chem. 2002;277(24):21598‐21603

[30] Renshaw-Philip S, L Lightbody-Kirsty, Vaclav Veverka, W Muskett-Fred, Geoff Kelly, A Frenkiel-Thomas, V Gordon-Stephen, Glyn Hewinson-R, Bernard Burke, Jim Norman, A Williamson-Richard, D Carr-Mark. Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6. EMBO J. 2005;24(14):2491-2498

[31] 夏远志, 王雪枝, 刘海灿, 李马超, 赵秀芹, 楼永良, 吕建新,万康林. 结核分枝杆菌抗原Rv2654c、Rv1985c和Rv3868的克隆表达及血清诊断学初步评价. 疾病监测. 2016, (04): 272-277

[32] Fan X, Q Gao, R Fu. DNA vaccine encoding ESAT-6 enhances the protective efficacy of BCG against Mycobacterium tuberculosis infection in mice. Scand J Immunol. 2007;66(5):523-528

[33] 谭卫国, 罗一婷, 陆普选, 余卫业. 2018 WHO全球结核报告:全球与中国关键数据分析. 新发传染病电子杂志. 2018, 2018, 3-4.

[34] Alemu-S-Fekadu-A Sinshaw Y. Successful TB treatment outcome and its associated factors among TB/HIV co-infected patients attending Gondar University Referral Hospital, Northwest Ethiopia: an institution based cross-sectional study. BMC Infect Dis. 2017 Feb 8;17(1):132. doi: 10.1186/s12879-017-2238-7

[35] MacNeil Adam, Philippe Glaziou, Charalambos Sismanidis, Susan Maloney, Katherine Floyd. Global Epidemiology of Tuberculosis and Progress Toward Achieving Global Targets - 2017. MMWR Morb Mortal Wkly Rep. 2019;68(11):263-266

[36] Fine-P E. Variation in protection by BCG: implications of and for heterologous immunity. Lancet. 1995;346(8986):1339-1345

[37] Gomes-M-Gabriela M, O Franco-Ana, C Gomes-Manuel, F Medley-Graham. The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy. Proc Biol Sci. 2004;271(1539):617-623

[38] Liu Jun, Vanessa Tran, S Leung-Andrea, C Alexander-David, Baoli Zhu. BCG vaccines: their mechanisms of attenuation and impact on safety and protective efficacy. Hum Vaccin. 2009;5(2):70-78

[39] Gao Lian-Yong, Su Guo, Bryant McLaughlin, Hiroshi Morisaki, N Engel-Joanne, J Brown-Eric. A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretion. Mol Microbiol. 2004;53(6):1677-1693

[40] Kalra Mamta, Ajay Grover, Neena Mehta, Jaspreet Singh, Jaspreet Kaur, B Sable-Suraj, Digambar Behera, Pawan Sharma, Indu Verma, K Khuller-G. Supplementation with RD antigens enhances the protective efficacy of BCG in tuberculous mice. Clin Immunol. 2007;125(2):173-183

[41] Jacqueline-M Achkar, Chan John, Casadevall Arturo. B cells and antibodies in the defense against M ycobacterium tuberculosis infection. Immunol Rev. 2015;264(1):167-181

[42] Ahmad Suhail, Eiman Mokaddas. Recent advances in the diagnosis and treatment of multidrug-resistant tuberculosis. Respir Med. 2009;103(12):1777-1790

[43] Devulder G, de Montclos M Pérouse, P Flandrois-J. A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol. 2005;55(Pt 1):293-302

[44] Camus Jean-Christophe, J Pryor-Melinda, Claudine Médigue, T Cole-Stewart. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology. 2002;148(Pt 10):2967-2973

[45] Rangaka-Molebogeng X, C Cavalcante-Solange, J Marais-Ben, Sok Thim, A Martinson-Neil, Soumya Swaminathan, E Chaisson-Richard. Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. Lancet. 2015;386(10010):2344-2353

[46] 徐志凯, 李凡, 刘晶星. 医学微生物学. 北京: 人民卫生出版社.2008:160-173

[47] 徐志凯, 李明远. 医学微生物学. 人民卫生出版社. 2015: 163-175

[48] Omae Yosuke, Licht Toyo-Oka, Hideki Yanai, Supalert Nedsuwan, Sukanya Wattanapokayakit, Nusara Satproedprai, Nat Smittipat, Prasit Palittapongarnpim, Pathom Sawanpanyalert, Wimala Inunchot, Ekawat Pasomsub, Nuanjun Wichukchinda, Taisei Mushiroda, Michiaki Kubo, Katsushi Tokunaga, Surakameth Mahasirimongkol. Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis. J Hum Genet. 2017;62(12):1015-1022

[49] Li Hao, Babak Javid. Antibodies and tuberculosis: finally coming of age? Nat Rev Immunol. 2018;18(9):591-596

[50] 李文彬,万康林. 结核分枝杆菌RD区蛋白研究进展. 中国人兽共患病学报, 2018, (04): 362-371

[51] Somoskovi A, M Parsons-L, M Salfinger. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res. 2001;2(3):164-168

[52] Tan-Siang Yong, Erika Kwok. Albert Calmette (1863-1933): originator of the BCG vaccine. Singapore Med J. 2012;53(7):433-434

[53] Peddireddy Vidyullatha, Narayana Doddam-Sankara, A Qureshi-Insaf, Priyadarshini Yerra, Niyaz Ahmed. A putative nitroreductase from the DosR regulon of Mycobacterium tuberculosis induces pro-inflammatory cytokine expression via TLR2 signaling pathway. Sci Rep. 2016;6:24535. Published 2016 Apr 20. doi:10.1038/srep24535

[54 ]Dye C, S Scheele, P Dolin, V Pathania, C Raviglione-M. Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA. 1999;282(7):677-686

[55] 赵雁林, 王黎霞 ,成诗明. 结核分枝杆菌药物敏感性试验标准化操作程序及质量保证手册. 北京:人民卫生出版社. 2013:15-28.

[56] Centers for Disease Control and Prevention (CDC).Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs--worldwide, 2000-2004. MMWR Morb Mortal Wkly Rep. 2006;55(11):301-305

[57] Kaufmann SH. How can immunology contribute to thecontrol of tuberculosis? Nat Rev Immunol. 2001;1(1):20-30

[58] 周正任. 医学微生物学. 北京:人民卫生出版社. 2003:193.

[59] 宋能, 刘焰, 段元山, 马杰. 结核分枝杆菌IgG抗体蛋白芯片对活动性与非活动性结核患者疗效的评价. 中国生化药物杂志. 2016, (12): 174-176.

[60] Schaible-U E, L Collins-H, H Kaufmann-S. Confrontation between intracellular bacteria and the immune system. Adv Immunol. 1999;71:267-377

[61] 刘丹霞, 董伟杰, 庹清章, 刘云霞, 李微, 章乐, 吴芳, 张万江. 不同毒力结核分枝杆菌对感染宿主巨噬细胞应激的调控作用研究. 中国病原生物学杂志. 2013, (03): 217-219.

[62] Ernst-J D. Macrophage receptors for Mycobacterium tuberculosis. Infect Immun. 1998;66(4):1277-1281

[63] Marks-S M, Z Taylor, L Qualls-N, J Shrestha-Kuwahara-R, A Wilce-M, H Nguyen-C. Outcomes of contact investigations of infectious tuberculosis patients. Am J Respir Crit Care Med. 2000;162(6):2033-2038

[64] Daley-C L, M Small-P, F Schecter-G, K Schoolnik-G, A McAdam-R, R Jacobs-W, C Hopewell-P. An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus. An analysis using restriction-fragment-length polymorphisms. N Engl J Med. 1992;326(4):231-235

[65] Keane J, S Gershon, P Wise-R, E Mirabile-Levens, J Kasznica, D Schwieterman-W, N Siegel-J, M Braun-M. Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med. 2001;345(15):1098-1104

[66] Kieser-Karen J, J Rubin-Eric. How sisters grow apart: mycobacterial growth and division. Nat Rev Microbiol. 2014;12(8):550-562

[67] Charles. Obihara. Infection with M. tuberculosis and atopy in children. 2006.

[68] Modlin-Robert L, R Bloom-Barry. TB or not TB: that is no longer the question. Sci Transl Med. 2013;5(213):213sr6. doi:10.1126/scitranslmed.3007402

[69] Ewer Katie, A Millington-Kerry, J Deeks-Jonathan, Lydia Alvarez, Gerry Bryant, Ajit Lalvani. Dynamic antigen-specific T-cell responses after point-source exposure to Mycobacterium tuberculosis. Am J Respir Crit Care Med. 2006;174(7):831-839

[70] World Health Organization. WHO report 2009:Clobal tuberculosis control:epidemiology, strategy, financing:Geneva:WHO, 2009.

[71] Mack U, B Migliori-G, M Sester, L Rieder-H, S Ehlers, D Goletti, A Bossink, K Magdorf, C H?lscher, B Kampmann, M Arend-S, A Detjen, G Bothamley, P Zellweger-J, H Milburn, R Diel, P Ravn, F Cobelens, J Cardona-P, B Kan, I Solovic, R Duarte, M Cirillo-D. LTBI: latent tuberculosis infection or lasting immune responses to M. tuberculosis? A TBNET consensus statement. Eur Respir J. 2009 May;33(5):956-73

[72] Andrews-Jason R, Farzad Noubary, P Walensky-Rochelle, Rodrigo Cerda, Elena Losina, Robert Horsburgh-C. Risk of progression to active tuberculosis following reinfection with Mycobacterium tuberculosis. Clin Infect Dis. 2012;54(6):784-791

[73] 姚翠梅, 孙长江, 雷连城,韩文瑜. 抗结核分枝杆菌感染的免疫机制. 河北科技师范学院学报. 2011, (01): 44-48

[74] Dieli F, M Troye-Blomberg, J Ivanyi, J Fournié-J, M Krensky-A, M Bonneville, A Peyrat-M, N Caccamo, G Sireci, A Salerno. Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T lymphocytes. J Infect Dis. 2001;184(8):1082-1085

[75] Stiehm ER. Joseph A. Bellanti (ed) immunology IV: clinical applications in health and disease. J Clin Immunol. 2012;32(3):647. doi:10.1007/s10875-012-9648-5

[76] Lanzavecchia A, F Sallusto. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science. 2000;290(5489):92-9

[77] Hickman-Somia Perdow, John Chan, Padmini Salgame. Mycobacterium tuberculosis induces differential cytokine production from dendritic cells and macrophages with divergent effects on naive T cell polarization. J Immunol. 2002;168(9):4636-4642

[78] Luke-D Jasenosky, Scriba Thomas-J, Hanekom Willem-A, Goldfeld Anne-E. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev. 2015;264(1):74-87

[79] Cho K, Cho E, Kwon S, Im S, Sohn I, Song S, Kim H, Kim S. Factors Associated with Indeterminate and False Negative Results of QuantiFERON-TB Gold In-Tube Test in Active Tuberculosis. Tuberc Respir Dis (Seoul). 2012 May;72(5):416-25.

[80] 熊思东, 金伯泉. 医学免疫学. 第5版. 北京: 人民卫生出版社. 2008: 185页

[81] 中国疾病预防控制中心. 中国结核病防治规划痰涂片镜检标准化操作及质量保证手册. 北京:中国协和医科大学出版社, 2009:7-9

[82] 吴基成, 张立兴, 屠德华, 蒋建英, 阚冠卿. 结核病控制工作中痰结核菌检查实施性研究. 中国防痨杂志. 1994, (03): 22-24.

[83] Onlne biology notes. Type IV hypersensitivity reaction or Delayed type hypersensitivity (DTH).

https://www.onlinebiologynotes.com/type-iv-hypersensitivity-reaction-or-delayed-type-hypersensitivity-dth/

[84] Pathogenesis of Glomerular Injury.

https://medchrome.com/basic-science/pathology/pathogenesis-glomerular-injury/August 9, 2011

[85] Ben-Selma Walid, Hedi Harizi, Jalel Boukadida. Immunochromatographic IgG/IgM test for rapid diagnosis of active tuberculosis. Clin Vaccine Immunol. 2011;18(12):2090-2094

[86] Vajda Szilárd, Alexandros Karargyris, Stefan Jaeger, C Santosh-K, Sema Candemir, Zhiyun Xue, Sameer Antani, George Thoma. Feature Selection for Automatic Tuberculosis Screening in Frontal Chest Radiographs. J Med Syst. 2018;42(8):146. Published 2018 Jun 29. doi:10.1007/s10916-018-0991-9

[87] Murray-John F. A century of tuberculosis. American journal of respiratory and critical care medicine. 2004 Jun 1;169(11):1181-6

[88] Jarvela-Jessica R, Lori Tuscano, Hung Lee, F Silver-Richard. Pulmonary responses to pathogen-specific antigens in latent Mycobacterium tuberculosis infection. Tuberculosis (Edinb). 2016;96:158-164

[89] Steingart-Karen R, Andrew Ramsay, Madhukar Pai. Optimizing sputum smear microscopy for the diagnosis of pulmonary tuberculosis. Expert Rev Anti Infect Ther. 2007;5(3):327-331

[90] Small-Peter M, Madhukar Pai. Tuberculosis diagnosis--time for a game change. N Engl J Med. 2010;363(11):1070-1071

[91] Welch-Ryan J, M Lawless-Kathleen, M Litwin-Christine. Antituberculosis IgG antibodies as a marker of active Mycobacterium tuberculosis disease. Clin Vaccine Immunol. 2012;19(4):522-526.

[92] 聂赣娟, 雷战平. 液基细胞学在痰结核杆菌检测中的应用. 临床与实验病理学杂志. 2013, (06): 690-691

[93] 黄鑫, 李从荣. 脑脊液单核细胞ESAT-6、LAM检测和16s rRNA基因检测对结核性脑膜炎的诊断价值研究. 中国妇幼健康研究. 2017, (S3): 142-144

[94] 王爱霞, 李月梅. 痰TB-RNA检测在肺结核中的诊断价值. 中国实用医药. 2019, (13): 27-28

[95] Helb Danica, Martin Jones, Elizabeth Story, Catharina Boehme, Ellen Wallace, Ken Ho, JoAnn Kop, R Owens-Michelle, Richard Rodgers, Padmapriya Banada, Hassan Safi, Robert Blakemore, Ngoc Lan-N-T, C Jones-López-Edward, Michael Levi, Michele Burday, Irene Ayakaka, D Mugerwa-Roy, Bill McMillan, Emily Winn-Deen, Lee Christel, Peter Dailey, D Perkins-Mark, H Persing-David, David Alland. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol. 2010;48(1):229-237

[96] 赵红梅, 张放. 结核分枝杆菌特异性抗原检测在临床诊断中的意义. 中国卫生标准管理. 2015, (01): 36-37

[97] Brown James, Kartik Kumar, Jacob Reading, Jennifer Harvey, Saraswathi Murthy, Santino Capocci, Susan Hopkins, Suranjith Seneviratne, Ian Cropley, Marc Lipman. Frequency and significance of indeterminate and borderline Quantiferon Gold TB IGRA results. Eur Respir J. 2017;50(4):1701267

[98] 谭立明. ELISA法检测的影响因素及其对策. 实验与检验医学. 2013, (04): 300-305

[99] Hwang Won-Hyun, Won-Kyu Lee, Weon Ryoo-Sung, Ki-Yeol Yoo, Gun-Sik Tae. Expression, purification and improved antigenicity of the Mycobacterium tuberculosis PstS1 antigen for serodiagnosis. Protein Expr Purif. 2014;95:77-83

[100] 侯宏伟. 结核病三种免疫学诊断方法的对比研究. 河北医科大学, 2015.

[101] Shen Feng, Chao Han, Mao-Shui Wang, Yu He. Poor agreement between repeated T-SPOT.TB in a short time period in a high TB burden country. Infect Dis (Lond). 2018;50(10):771-774

[102] Steingart-Karen R, Megan Henry, Suman Laal, C Hopewell-Philip, Andrew Ramsay, Dick Menzies, Jane Cunningham, Karin Weldingh, Madhukar Pai. Commercial serological antibody detection tests for the diagnosis of pulmonary tuberculosis: a systematic review. PLoS medicine vol. 4,6 (2007): e202. doi:10.1371/journal.pmed.0040202

[103] Yang Hongliang, A Kruh-Garcia-Nicole, M Dobos-Karen. Purified protein derivatives of tuberculin--past, present, and future.. FEMS Immunol Med Microbiol. 2012;66(3):273-280

[104] MedicineNet. Tuberculosis Skin Test (PPD Skin Test). 2019

https://www.medicinenet.com/tuberculosis_skin_test_ppd_skin_test/article.htm

[105] Mazurek-Gerald H, John Jereb, Andrew Vernon, Phillip LoBue, Stefan Goldberg, Kenneth Castro. Updated guidelines for using Interferon Gamma Release Assays to detect Mycobacterium tuberculosis infection - United States, 2010.[J]. MMWR Recomm Rep. 2010;59(RR-5):1-25

[106] 吴晓康, 周维肖, 冯楠, 张毅, 雷珂, 李丽华, 刘泽世, 许楠, 耿燕. 影响TB-IGRA检测结果的因素分析及应对措施. 现代检验医学杂志. 2018, (04): 154-156.

[107] Warner-Digby F, Anastasia Koch, Valerie Mizrahi. Diversity and disease pathogenesis in Mycobacterium tuberculosis. Trends Microbiol. 2015;23(1):14-21

[108] Nayak Niranjan. Mycobacterium Tuberculosis Biofilm - A new perspective. Indian J Tuberc. 2015;62(1):4-6

[109] 池水晶, 宝福凯, 柳爱华. 结核分枝杆菌比较基因组学研究进展. 科技通报. 2013, (09): 40-45

[110] 任宁宁.结核分枝杆菌RD区诊断标识抗原的筛选及卡介苗突变体库的构建[硕士学位论文]. 湖北: 华中农业大学, 2018

[111] Xu Junjie, Olli Laine, Mark Masciocchi, Joanna Manoranjan, Jennifer Smith, Du Shao Jun, Nathan Edwards, Xiaoping Zhu, Catherine Fenselau, Lian-Yong Gao. A unique Mycobacterium ESX-1 protein co-secretes with CFP-10/ESAT-6 and is necessary for inhibiting phagosome maturation. Mol Microbiol. 2007;66(3):787-800

[112] Fortune-S M, A Jaeger, A Sarracino-D, R Chase-M, M Sassetti-C, R Sherman-D, R Bloom-B, J Rubin-E. Mutually dependent secretion of proteins required for mycobacterial virulence. Proc Natl Acad Sci U S A. 2005;102(30):10676-10681

[113] McLaughlin Bryant, S Chon-Janet, A MacGurn-Jason, Fredric Carlsson, L Cheng-Terri, S Cox-Jeffery, J Brown-Eric. A mycobacterium ESX-1-secreted virulence factor with unique requirements for export. PLoS Pathog. 2007;3(8):e105

[114] Wards-B J, de Lisle G W, M Collins-D. An esat6 knockout mutant of Mycobacterium bovis produced by homologous recombination will contribute to the development of a live tuberculosis vaccine. Tuber Lung Dis. 2000;80(4-5):185-189

[115] Kaku Taijin, Ikuo Kawamura, Ryosuke Uchiyama, Takeshi Kurenuma, Masao Mitsuyama. RD1 region in mycobacterial genome is involved in the induction of necrosis in infected RAW264 cells via mitochondrial membrane damage and ATP depletion. FEMS Microbiol Lett. 2007;274(2):189-195

[116] De Jonge Marien I, Gérard Pehau-Arnaudet, M Fretz-Marjan, Felix Romain, Daria Bottai, Priscille Brodin, Nadine Honoré, Gilles Marchal, Wim Jiskoot, Patrick England, T Cole-Stewart, Roland Brosch. ESAT-6 from Mycobacterium tuberculosis dissociates from its putative chaperone CFP-10 under acidic conditions and exhibits membrane-lysing activity. J Bacteriol. 2007;189(16):6028-6034

[117] Codecasa Luigi, Paola Mantegani, Laura Galli, Adriano Lazzarin, Paolo Scarpellini, Claudio Fortis. An in-house RD1-based enzyme-linked immunospot-gamma interferon assay instead of the tuberculin skin test for diagnosis of latent Mycobacterium tuberculosis infection. J Clin Microbiol. 2006;44(6):1944-1950

[118] Hoff-Soren T, G Peter-Jonathan, Grant Theron, Mellissa Pascoe, N Tingskov-Pernille, Henrik Aggerbeck, Daniel Kolbus, Morten Ruhwald, Peter Andersen, Keertan Dheda. Sensitivity of C-Tb: a novel RD-1-specific skin test for the diagnosis of tuberculosis infection Eur Respir J. 2016;47(3):919-928

[119] Aggerbeck Henrik, Rafaela Giemza, Paulatsya Joshi, N Tingskov-Pernille, T Hoff-S?ren, Julia Boyle, Peter Andersen, M Lewis-David-J. Randomised clinical trial investigating the specificity of a novel skin test (C-Tb) for diagnosis of M. tuberculosis infection. PLoS One. 2013;8(5):e64215. Published 2013 May 14. doi:10.1371/journal.pone.0064215

[120] Aggerbeck H, Ruhwald M, Hoff ST, Borregaard B, Hellstrom E, Malahleha M, Siebert M, Gani M, Seopela V, Diacon A, Lourens M, Andersen P, Dheda K.C-Tb skin test to diagnose Mycobacterium tuberculosis infection in children and HIV-infected adults: A phase 3 trial. PLoS One. 2018;13(9):e0204554. Published 2018 Sep 24. doi:10.1371/journal.pone.0204554

[121] Kim-S Y, S Park-M, S Kim-Y, K Kim-S, J Chang, J Lee-H, S-N Cho, A Kang-Y. The responses of multiple cytokines following incubation of whole blood from TB patients, latently infected individuals and controls with the TB antigens ESAT-6, CFP-10 and TB7.7. Scand J Immunol. 2012;76(6):580‐586

[122] Luo Wei, Zi-Lu Qu, Yan Xie, Jie Xiang, Xiao-Lian Zhang. Identification of a novel immunodominant antigen Rv2645 from RD13 with potential as a cell-mediated immunity-based TB diagnostic agent. J Infect. 2015;71(5):534-543

[123] Mahairas-G G, J Sabo-P, J Hickey-M, C Singh-D, K Stover-C. Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol. 1996;178(5):1274-1282

[124] Feng Xiaoyan, Bingshui Xiu, Kun Chen, Xiqin Yang, Hongtao Zhang, Jun Yue, Yaoju Tan, Hongmin Li, A Nicholson-Russell, W Tam-Albert, Ping Zhao, Li Zhang, Jing Liu, Xiaoguo Song, Guohua Wang, Heqiu Zhang. Enhanced serodiagnostic utility of novel Mycobacterium tuberculosis polyproteins. J Infect. 2013;66(4):366-375

[125 ]Matulis G, P Jüni, M Villiger-P, D Gadola-S. Detection of latent tuberculosis in immunosuppressed patients with autoimmune diseases: performance of a Mycobacterium tuberculosis antigen-specific interferon gamma assay. Ann Rheum Dis. 2008;67(1):84-90

分类号:

 R378.91    

馆藏位置:

 医临时馆    

开放日期:

 2023-11-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式