论文题名(中文): |
佩梅病临床遗传学特点分析及PLP1突变致病的细胞学机制研究
|
作者: |
段若愚
|
学号: |
B1811110206
|
论文语种: |
chi
|
学科名称: |
医学 - 临床医学 - 儿科学
|
学生类型: |
博士
|
学校: |
北京大学医学部
|
院系: |
第一临床医学院
|
专业: |
儿科学
|
第一导师姓名: |
王静敏
|
第二导师姓名: |
李明
|
论文完成日期: |
2021-05-27
|
论文答辩日期: |
2021-05-21
|
论文题名(外文): |
Genotype and phenotype analysis in Pelizaeus-Merzbacher disease and study of cellular pathogenicity resulted from PLP1 mutation
|
关键词(中文): |
佩梅病 ; 基因型 ; 表型 ; 自然史 ; 中国人群 ; PLP1突变 ; 内质网 ; 线粒体 ; 内质网和线粒体相关膜结构
|
关键词(外文): |
Pelizaeus–Merzbacher Disease ; Genotype ; Phenotype ; Natural History ; Chinese Cohort Study ; PLP1 Mutation ; Mitochondria ; EndoplasmicReticulum (ER) ; ER and Mitochondria-associated Membranes (MAMs)
|
论文文摘(中文): |
︿
第一部分 PMD的临床遗传学特点分析
目的:通过对佩梅病 (Pelizaeus–Merzbacher disease, PMD)患者进行临床遗传学特点分析以及随访,了解疾病自然史及转归,阐明基因型与表型关系,为PMD的精确诊疗、预后评估及产前诊断打下基础。
方法:从2005年以来就诊于北京大学第一医院诊断为PMD的患者中纳入研究对象。采用问卷或电话、微信的方式对患者进行随访。采集PMD患者临床资料,分析其自然病史及临床进展。应用多重连接探针扩增 (multiplex ligation probe amplification, MLPA)和Sanger或全外显子测序 (whole-exome sequencing, WES)进行遗传学分析。根据基因诊断结果分析自然史和基因型-表型相关性。
结果:本中心共诊断141例患者,随访研究共纳入111位患者。包括105例男性和6例女性患者,12.6%的患者有家族史,首次就诊和最后一次随访的中位年龄分别为12个月(1,336)和78个月(7,482)。4例患者为分别来自于两个家庭的兄弟,6例患者在最后一次随访中已去世。
在所有患者中,发育迟缓是最常见(100%)的主诉,眼震和肌张力低下是PMD患者中最常见的首发症状。截止最后一次随访,共计78.4%的患者可以竖头,72.1%的患者可以说单词。很少有患者可以独自站立(9.0%)或走路(4.5%)。超过一半的患者(58.2%)眼震症状得到改善,肌张力低下的患者可能在后期出现肌张力障碍及退化,例如关节挛缩,痉挛性截瘫及共济失调等。7.2%的患者出现癫痫发作,1例患者在7岁时因癫痫发作去世。与中间型和经典型相比,先天型的患者发病较早,运动和认知能力获得的年龄较晚(p<0.05),临床转归例如出现脑干功能不全或肌张力障碍的占比更高。
141例患者中检出110例(78.0%)PLP1重复突变,31例(22.0%)PLP1点突变,其中12例为新生突变,26种突变已被报道。突变F32L在3例患者中被检出,P126S突变以往在2例患者中被报道。31例点突变中29例为错义突变,2例缺失突变。2例 (G208D, G208V)错义突变发生在同一位点上。更多的PLP1点突变患者临床上表现为先天型,而PLP1重复患者则更多地被归为中间型(p<0.001)。随访中38个患者家系共计进行54次产前诊断,PLP1检测结果提示:17例胎儿基因型与先证者相同,16例携带先证者的致病突变,21例胎儿为野生型。
结论:PMD患者最常见的起病症状为眼震或肌张力低下,随后出现智力运动发育落后、肌张力障碍伴或不伴癫痫共济失调等。PLP1点突变多表现为先天型,而PLP1重复的患者多表现为中间型。相对于中间型和经典型,先天型患者起病早,获得的智力运动发育里程碑更少,获得年龄更晚,临床转归更差。产前诊断为避免患儿家庭再次生育同样的患者提供了有效的帮助。
第二部分 PLP1突变导致PMD的细胞学机制研究
目的:通过PLP1突变对细胞器互作网络稳态的影响,揭示PLP1突变致病的细胞分子学机制,为PMD的临床药物筛选提供实验基础。
方法:应用超高分辨率结构光成像显微镜(spinning-disc pinhole-based structured illumination microscopy, SD-SIM)检测PLP1点突变中PLP1在Mo3.13细胞内的运输途径及PLP1重复突变患者皮肤成纤维细胞内质网 (endoplasmic reticulum, ER)和线粒体之间的相互作用,利用Seahorse XF细胞外分析仪实时监测线粒体呼吸功能。
结果: PLP1点突变主要影响PLP1在膜上的表达从而发挥致病作用,不同PLP1点突变可表现为不同严重程度的细胞表型:最严重的表型为Mo3.13细胞中细胞膜上的“丝状伪足样”结构消失,大量的PLP1潴留在内质网中;其次为Mo3.13细胞“丝状伪足”结构部分存在,大部分蛋白质出现在囊泡(溶酶体)结构中;最轻的表型为Mo3.13细胞质膜上的“丝状伪足”结构存在且有PLP1的表达,部分未转运到细胞膜上的蛋白质出现在囊泡(溶酶体)结构中。而细胞表型的轻重程度与相应突变体在患者中表现出临床表现的轻重相一致。胆固醇的补充能够且仅能改善最严重的细胞表型。
在PLP1重复突变患者的皮肤成纤维细胞中,相对于对照组,PLP1的表达量升高(p=0.037);更多的内质网形态发生改变:表现为外周ER“片状”结构在细胞内的占比增大(p<0.001),形态变大(p<0.001)。异形内质网周围区域与线粒体的接触面增多,距离变近(p<0.001)。与此同时,线粒体的形态也发生改变,患者皮肤成纤维细胞中线粒体长度比对照组短,“管状”线粒体占比减少,“膨大点状”(Large Spherical Mitochondria, LASMs)等异形线粒体的占比增多(p<0.05)。对线粒体呼吸功能的检测显示PLP1重复突变患者皮肤成纤维细胞最大呼吸强度较对照组低 (p<0.001)。但患者组间不同内质网,线粒体形态的占比及线粒体呼吸强度没有显著差异(p>0.05)。
结论:PLP1点突变可改变PLP1在细胞内的运输及在膜上表达的结果,产生与患者表型轻重程度一致的细胞表型,胆固醇可改善最严重的细胞表型。PLP1重复突变可导致连接线粒体和ER的线粒体相关膜结构 (Mitochondria-associated Membranes, MAMs)的距离减小,从而产生致病作用。
﹀
|
文摘(外文): |
︿
Part I: Genotype-phenotype correlation analyses of Pelizaeus–Merzbacher disease
Background: To investigate the natural history and genotype-phenotype correlation of Pelizaeus–Merzbacher disease (PMD) in a cohort study and lay a foundation of precise diagnosis and treatment as well as genetic counseling.
Method: Patients who met the criteria for PMD were enrolled in our study. Patients were followed up 1-3 times and interviewed via questionnaire survey, telephone or WeChat. Clinical data were collected to analyze the natural history and clinical progress of PMD patients. Genomic analysis was conducted by multiplex ligation probe amplification (MLPA) and Sanger or whole-exome sequencing (WES). Differences in natural history and genotype- phenotype correlations were analyzed.
Result: 141 patients were diagnosis in our center, 111 patients were enrolled in our follow-up study, including 105 males and 6 females. 12.6% of the patients have more than one affected families. The median age at first visit and the last follow-up were 12 months (1, 336) and 78 months (7, 482), respectively. Four patients were bothers from two families, six patients have died in our last follow-up.
Developmental delay was the most common complaint in all of the children, nystagmus and hypotonia were the most common initial symptoms observed in the PMD patients. A total of 78.4% of the patients could control their head and 72.1% of the patients could speak words. Few patients could stand (9.0%) or walk (4.5%) by themselves. More than half of the patients’ nystagmus conditions improved and patients with hypotonia can deteriorate to dystonia. For example joint contracture, spasticity tetraparesis, ataxia and so on. 7.2% of the patients had seizures in the follow-up study and one patient even died of seizures in his 7 years old. More PLP1 point mutations patients were categorized into the connatal group, while the patients with PLP1 duplications were categorized into the transitional group (p<0.001). Patients in the connatal group had an earlier disease onset and acquired motor and recognized skills at a later age than the patients in the transitional and classic groups (p<0.05).
110 patients were diagnosed with PLP1 duplication mutation while PLP1 point mutation were found in 31 patients, among which 12 mutations were De novo. The mutation of F32L was detacted in three patients in our cohort, P126S has been reported in two patients previously. 29 out of 31 mutations were missence mutations while the other 2 mutations were deletion mutations. Two of the missence mutations were different mutations occurring at the same position. A total of 54 prenatal diagnoses were made in 38 patient families during the follow-up. PLP1 genetic test results indicated that 17 fetuses had the same genotype as the proband, 16 fetuses carried pathogenic mutations of the proband, and 21 fetuses were wild type.
Conclusion: The PMD patients had an early disease onset with nystagmus and hypotonia followed by development delay, hypotonia deterioration with/without seizures and ataxia. Patients who identified with PLP1 duplication were more categorized into the transitional group, while more patients with point mutations were categorized into the connatal group. Compared with transitional and classical group, patients with connatal group has a more earlier disease onset, lower level of development and worse clinical outcome. Prenatal diagnosis provides effective help to prevent the probands’ families from giving birth to a same patient.
Part II: Potential pathogenicity resulted from PLP1 mutations in patients with Pelizaeus–Merzbacher disease
Objective: This study aim to analyze the influence of PLP1 mutations on the organelle interaction network(OIN), which imply the cellular mechanism of PLP1 mutation and also lay a foundation for drug screening of PMD.
Method: With spinning-disc pinhole-based structured illumination microscopy (SD-SIM), we followed up with PLP1 expression in Mo3.13 and examined the interactions between endoplasmic reticulum (ER) and mitochondria in patients’ fibroblasts of PLP1 duplication. we measured mitochondrial respiration with a Seahorse XF Extracellular Analyzer.
Result: Different pathogenicities were found between PLP1 point mutation and PLP1 duplication. PLP1 point mutation affected the PLP1 delivering to the plasma membrane. while different mutants lead to either abnormal retention of PLP1 in endoplasmic reticulum (ER) without any filopodia in the membrane, or its mis-targeting to vesicular structures (lysosomes) with some filopodia, or trafficking and exocytosis of PLP1-containing vesicles and with PLP1 targetting to the filipodia in the memrane, which from the most severe type to the mildest type. These cellular phenotypes correlate nicely with the severity of disease phenotype in patients. Cholesterol only could alter the most severe cellular phenotypes.
In the PLP1 duplication patients’ fibroblasts, compared with control’s fibroblasts, PLP1 expressions in the patients’ fibroblasts are higher, more “expanded ER-sheets” were seen in the peripherial ER(p<0.001). Meanwhile, more shorter and less “Tubular” mitochondria and more “Large Spherical Mitochondria (LASMs)” were found in PLP1 duplication patients’ fibroblasts(p<0.05). Moreover, the maximal oxygen consumption rate (OCR) were lower in patients’ group compared with control (p<0.001), but there were no significant difference between patients’ group of the above results.
Conclusion: PLP1 point mutation can affect the PLP1 delivering to the plasma membrane, with the most severe type was abnormal retention of PLP1 in endoplasmic reticulum (ER) and the mildest type was PLP1 targetting to the filipodia in the membranes. Cholesterol only could alter the most severe cellular phenotypes.While in PLP1 duplication patients, the mitochondria dysfunction can due to the larger interfaces between ER and mitochondria. which can partly explain the pathogenicity mechanism of PLP1 duplication.
﹀
|
论文目录: |
︿
摘要 I ABSTRACT IV 目录 VIII 主要符号对照表 XI 第一章 文献综述 佩梅病临床遗传学特点分析及PLP1致病的细胞学机制研究 1 1.1 PMD概述 1 1.1.1 PMD的命名及流行病学特点 1 1.1.2 PMD的病理学特点 1 1.2 PMD临床特点研究进展 2 1.2.1 PMD临床表现 2 1.2.2 PMD诊断标准及分型 2 1.3 PMD的遗传学特点 4 1.3.1 致病基因PLP1及蛋白脂蛋白I型 4 1.3.2 PLP1突变类型 5 1.4 PMD的基因型表型关系 5 1.5 PLP1突变致病的细胞学机制研究 7 1.5.1 PLP1与髓鞘 7 1.5.2 PLP1突变影响髓鞘结构及功能的作用机制 9 1.6 PMD的治疗及预后 14 1.7 小结 14 第二章 PMD临床遗传学特点分析 16 2.1 引言 16 2.2 研究目的 17 2.3 研究对象及方法 17 2.3.1 研究对象 17 2.3.2 临床研究方法 18 2.3.3 临床随访研究 19 2.3.4 遗传学分析方法 20 2.3.5 伦理及知情同意 22 2.3.6 统计学分析 22 2.4 结果 23 2.4.1 患者一般信息特点 23 2.4.2 PMD患者的临床特点 23 2.4.3 PMD患者的遗传学特点 27 2.4.5 PMD患者基因型-表型之间的关系 31 2.5 讨论 43 2.5.1 PMD临床特点结果讨论 43 2.5.2 PMD遗传特点结果讨论 43 2.5.3 PMD基因型与表型的关系讨论 44 2.5.4 PMD的预后讨论 45 2.6 局限性 45 2.7 小结 45 第三章 PLP1突变致病的细胞学机制研究 47 3.1 引言 47 3.2 研究目的 47 3.3 材料和方法 48 3.3.1 研究对象 48 3.3.2 实验材料及仪器 48 3.3.3 研究方法 50 3.4 结果 60 3.4.1 入组患者的临床及遗传学特点 60 3.4.2 PLP1点突变细胞学研究结果 62 3.4.3 PLP1重复突变细胞学研究结果 64 3.5 讨论 70 3.5.1 PLP1点突变细胞学致病机制的讨论 70 3.5.2 PLP1重复突变细胞学致病机制的讨论 71 3.5.3 PLP1突变与细胞表型关系的讨论 74 3.5.4 胆固醇纠正细胞表型的临床意义 75 3.6 局限性 75 3.7 小结 76 第四章 结论及展望 77 4.1 PMD临床遗传学特点 77 4.2 PLP1突变致病的细胞学机制 77 参考文献 78 附录A 佩梅病(PMD)随访问卷 91 附录B 本中心PMD患者产前诊断结果汇总 112 附录C 三种PLP1重复突变患者和对照组皮肤成纤维细胞光成像 114 致谢 115 北京大学学位论文原创性声明和使用授权说明 116
﹀
|
参考文献: |
︿
[1] PELIZAEUS F. Ueber eine eigenthümliche Form spastischer L?hmung mit Cerebralerscheinungen auf heredit?rer Grundlage. (Multiple Sklerose) [J]. [2] MERZBACHER L. Enie eigennartige familiar hereditare Erkrankungsform (Aplasia axialis extracorticalis congenita) [J]. [3] NUMATA Y, GOTOH L, IWAKI A, et al. Epidemiological, clinical, and genetic landscapes of hypomyelinating leukodystrophies [J]. Journal of neurology, 2014, 261(4): 752-8. [4] HEIM P, CLAUSSEN M, HOFFMANN B, et al. Leukodystrophy incidence in Germany [J]. American journal of medical genetics, 1997, 71(4): 475-8. [5] BARCZYKOWSKI A L, FOSS A H, DUFFNER P K, et al. Death rates in the U.S. due to Krabbe disease and related leukodystrophy and lysosomal storage diseases [J]. American journal of medical genetics Part A, 2012, 158a(11): 2835-42. [6] STELLITANO L A, WINSTONE A M, VAN DER KNAAP M S, et al. Leukodystrophies and genetic leukoencephalopathies in childhood: a national epidemiological study [J]. Developmental medicine and child neurology, 2016, 58(7): 680-9. [7] SIMA A A, PIERSON C R, WOLTJER R L, et al. Neuronal loss in Pelizaeus-Merzbacher disease differs in various mutations of the proteolipid protein 1 [J]. Acta neuropathologica, 2009, 118(4): 531-9. [8] SEITELBERGER F. [Pathology and pathogenesis of hepatogenic encephalopathies] [J]. Epatologia (Roma), 1970, 16(4): 365-72. [9] SEITELBERGER F. Neuropathology and genetics of Pelizaeus-Merzbacher disease [J]. Brain pathology (Zurich, Switzerland), 1995, 5(3): 267-73. [10] KOEPPEN A H. Myelin deficiency in female rats due to a mutation in the PLP gene [J]. [11] ZEMAN W, DEMYER W, FALLS H F. PELIZAEUS-MERZBACHER DISEASE. A STUDY IN NOSOLOGY [J]. Journal of neuropathology and experimental neurology, 1964, 23(334-54. [12] BARKOVICH A J, DEON S. Hypomyelinating disorders: An MRI approach [J]. Neurobiology of disease, 2016, 87(50-8. [13] HUDSON L D. Pelizaeus-Merzbacher disease and spastic paraplegia type 2: two faces of myelin loss from mutations in the same gene [J]. Journal of child neurology, 2003, 18(9): 616-24. [14] INOUE K. Pelizaeus-Merzbacher Disease: Molecular and Cellular Pathologies and Associated Phenotypes [J]. Advances in experimental medicine and biology, 2019, 1190(201-16. [15] ULRICH J. Die Pelizaeus-Merzbachersche Krankheit (PMK) [J]. [16] WATANABE I, MCCAMAN R, DYKEN P, et al. Absence of cerebral myelin sheaths in a case of presumed Pelizaeus-Merzbacher disease. Electron microscopic and biochemical studies [J]. Journal of neuropathology and experimental neurology, 1969, 28(2): 243-56. [17] TYLER H R. Pelizaeus-Merzbacher disease [J]. AMA archives of neurology and psychiatry, 1958, 80(2): 162-9. [18] WATTERS G V, FITCH N. Familial laryngeal abductor paralysis and psychomotor retardation [J]. Clinical genetics, 1973, 4(5): 429-33. [19] ULRICH J, HERSCHKOWITZ N. Seitelberger's connatal form of Pelizaeus-Merzbacher Disease. Case report, clinical, pathological and biochemical findings [J]. Acta neuropathologica, 1977, 40(2): 129-36. [20] RENIER W O, GABRE?LS F J, HUSTINX T W, et al. Connatal Pelizaeus-Merzbacher disease with congenital stridor in two maternal cousins [J]. Acta neuropathologica, 1981, 54(1): 11-7. [21] CAILLOUX F, GAUTHIER-BARICHARD F, MIMAULT C, et al. Genotype-phenotype correlation in inherited brain myelination defects due to proteolipid protein gene mutations. Clinical European Network on Brain Dysmyelinating Disease [J]. European journal of human genetics : EJHG, 2000, 8(11): 837-45. [22] WILKUS R J, FARRELL D F. Electrophysiologic observations in the classical form of Pelizaeus-Merzbacher disease [J]. Neurology, 1976, 26(11): 1042-5. [23] BOULLOCHE J, AICARDI J. Pelizaeus-Merzbacher disease: clinical and nosological study [J]. Journal of child neurology, 1986, 1(3): 233-9. [24] LOTT I T, PARKER S W, HERNDON R M, et al. 1590 DEMYELINATION IN PELIZAEUS-MERZBACHER DISEASE [J]. [25] MALLINSON A I, LONGRIDGE N S, DUNN H G, et al. Vestibular studies in Pelizaeus-Merzbacher disease [J]. The Journal of otolaryngology, 1983, 12(6): 361-4. [26] GROSSI S, REGIS S, BIANCHERI R, et al. Molecular genetic analysis of the PLP1 gene in 38 families with PLP1-related disorders: identification and functional characterization of 11 novel PLP1 mutations [J]. Orphanet journal of rare diseases, 2011, 6(40. [27] SEITELBERGER F. Pelizaeus-Merzbacher disease [J]. [28] L?WENBERG K, HILL T S. DIFFUSE SCLEROSIS WITH PRESERVED MYELIN ISLANDS [J]. [29] BRUYN G W, WEENINK H R, BOTS G T, et al. Pelizaeus-Merzbacher disease. The L?wenberg-Hill type [J]. Acta neuropathologica, 1985, 67(3-4): 177-89. [30] WATANABE I, PATEL V, GOEBEL H H, et al. Early lesion of Pelizaeus-Merzbacher disease: electron microscopic and biochemical study [J]. Journal of neuropathology and experimental neurology, 1973, 32(2): 313-33. [31] GENCIC S, ABUELO D, AMBLER M, et al. Pelizaeus-Merzbacher disease: an X-linked neurologic disorder of myelin metabolism with a novel mutation in the gene encoding proteolipid protein [J]. American journal of human genetics, 1989, 45(3): 435-42. [32] SAUGIER-VEBER P, MUNNICH A, BONNEAU D, et al. X-linked spastic paraplegia and Pelizaeus-Merzbacher disease are allelic disorders at the proteolipid protein locus [J]. Nature genetics, 1994, 6(3): 257-62. [33] OSAKA H, KAWANISHI C, INOUE K, et al. Novel nonsense proteolipid protein gene mutation as a cause of X-linked spastic paraplegia in twin males [J]. Biochemical and biophysical research communications, 1995, 215(3): 835-41. [34] INOUE K. PLP1-related inherited dysmyelinating disorders: Pelizaeus-Merzbacher disease and spastic paraplegia type 2 [J]. Neurogenetics, 2005, 6(1): 1-16. [35] WILLARD H F, RIORDAN J R. Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders [J]. Science (New York, NY), 1985, 230(4728): 940-2. [36] NAVE K A, LAI C, BLOOM F E, et al. Splice site selection in the proteolipid protein (PLP) gene transcript and primary structure of the DM-20 protein of central nervous system myelin [J]. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84(16): 5665-9. [37] GREER J M, LEES M B. Myelin proteolipid protein--the first 50 years [J]. The international journal of biochemistry & cell biology, 2002, 34(3): 211-5. [38] WEIMBS T, STOFFEL W. Proteolipid protein (PLP) of CNS myelin: positions of free, disulfide-bonded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP [J]. Biochemistry, 1992, 31(49): 12289-96. [39] DAFFU G, SOHI J, KAMHOLZ J. Proteolipid protein dimerization at cysteine 108: Implications for protein structure [J]. Neuroscience research, 2012, 74(2): 144-55. [40] SWANTON E, HOLLAND A, HIGH S, et al. Disease-associated mutations cause premature oligomerization of myelin proteolipid protein in the endoplasmic reticulum [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(12): 4342-7. [41] KLUGMANN M, SCHWAB M H, PüHLHOFER A, et al. Assembly of CNS myelin in the absence of proteolipid protein [J]. Neuron, 1997, 18(1): 59-70. [42] BIZZOZERO O A, BIXLER H A, DAVIS J D, et al. Chemical deacylation reduces the adhesive properties of proteolipid protein and leads to decompaction of the myelin sheath [J]. Journal of neurochemistry, 2001, 76(4): 1129-41. [43] IKENAKA K, KAGAWA T, MIKOSHIBA K. Selective expression of DM-20, an alternatively spliced myelin proteolipid protein gene product, in developing nervous system and in nonglial cells [J]. Journal of neurochemistry, 1992, 58(6): 2248-53. [44] DíAZ R S, MONREAL J, LUCAS M. Calcium movements mediated by proteolipid protein and nucleotides in liposomes prepared with the endogenous lipids from brain white matter [J]. Journal of neurochemistry, 1990, 55(4): 1304-9. [45] KITAGAWA K, SINOWAY M P, YANG C, et al. A proteolipid protein gene family: expression in sharks and rays and possible evolution from an ancestral gene encoding a pore-forming polypeptide [J]. Neuron, 1993, 11(3): 433-48. [46] YAMADA M, IVANOVA A, YAMAGUCHI Y, et al. Proteolipid protein gene product can be secreted and exhibit biological activity during early development [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1999, 19(6): 2143-51. [47] RASKIND W H, WILLIAMS C A, HUDSON L D, et al. Complete deletion of the proteolipid protein gene (PLP) in a family with X-linked Pelizaeus-Merzbacher disease [J]. American journal of human genetics, 1991, 49(6): 1355-60. [48] ELLIS D, MALCOLM S. Proteolipid protein gene dosage effect in Pelizaeus-Merzbacher disease [J]. Nature genetics, 1994, 6(4): 333-4. [49] GENCIC S, HUDSON L D. Conservative amino acid substitution in the myelin proteolipid protein of jimpymsd mice [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1990, 10(1): 117-24. [50] TROFATTER J A, DLOUHY S R, DEMYER W, et al. Pelizaeus-Merzbacher disease: tight linkage to proteolipid protein gene exon variant [J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(23): 9427-30. [51] NAVE K A, LAI C, BLOOM F E, et al. Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing [J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(23): 9264-8. [52] WANG P J, HWU W L, LEE W T, et al. Duplication of proteolipid protein gene: a possible major cause of Pelizaeus-Merzbacher disease [J]. Pediatric neurology, 1997, 17(2): 125-8. [53] INOUE K, OSAKA H, SUGIYAMA N, et al. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR [J]. American journal of human genetics, 1996, 59(1): 32-9. [54] SISTERMANS E A, DE COO R F, DE WIJS I J, et al. Duplication of the proteolipid protein gene is the major cause of Pelizaeus-Merzbacher disease [J]. Neurology, 1998, 50(6): 1749-54. [55] MIMAULT C, GIRAUD G, COURTOIS V, et al. Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher Disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The Clinical European Network on Brain Dysmyelinating Disease [J]. American journal of human genetics, 1999, 65(2): 360-9. [56] HODES M E, WOODWARD K, SPINNER N B, et al. Additional copies of the proteolipid protein gene causing Pelizaeus-Merzbacher disease arise by separate integration into the X chromosome [J]. American journal of human genetics, 2000, 67(1): 14-22. [57] WOODWARD K, KENDALL E, VETRIE D, et al. Pelizaeus-Merzbacher disease: identification of Xq22 proteolipid-protein duplications and characterization of breakpoints by interphase FISH [J]. American journal of human genetics, 1998, 63(1): 207-17. [58] ZHANG L, WANG J, ZHANG C, et al. Efficient CNV breakpoint analysis reveals unexpected structural complexity and correlation of dosage-sensitive genes with clinical severity in genomic disorders [J]. Human molecular genetics, 2017, 26(10): 1927-41. [59] REGIS S, BIANCHERI R, BERTINI E, et al. Genotype-phenotype correlation in five Pelizaeus-Merzbacher disease patients with PLP1 gene duplications [J]. Clinical genetics, 2008, 73(3): 279-87. [60] BAILEY K A, ALDINGER K A. An X-linked microcephaly syndrome caused by disruptions of CASK implicates the CASK-TBR1-RELN pathway in human brain development [J]. Clinical genetics, 2009, 75(5): 424-5. [61] FERRANTE M I, GHIANI M, BULFONE A, et al. IL1RAPL2 maps to Xq22 and is specifically expressed in the central nervous system [J]. Gene, 2001, 275(2): 217-21. [62] YUAN B, HAREL T, GU S, et al. Nonrecurrent 17p11.2p12 Rearrangement Events that Result in Two Concomitant Genomic Disorders: The PMP22-RAI1 Contiguous Gene Duplication Syndrome [J]. American journal of human genetics, 2015, 97(5): 691-707. [63] POSEY J E, HAREL T, LIU P, et al. Resolution of Disease Phenotypes Resulting from Multilocus Genomic Variation [J]. The New England journal of medicine, 2017, 376(1): 21-31. [64] LIU P, GELOWANI V, ZHANG F, et al. Mechanism, prevalence, and more severe neuropathy phenotype of the Charcot-Marie-Tooth type 1A triplication [J]. American journal of human genetics, 2014, 94(3): 462-9. [65] ANDERSON T J, GRIFFITHS I R. Pelizaeus-Merzbacher disease [J]. Laboratory animal science, 1999, 49(1): 54-7. [66] FANARRAGA M L, GRIFFITHS I R, MCCULLOCH M C, et al. Rumpshaker: an X-linked mutation causing hypomyelination: developmental differences in myelination and glial cells between the optic nerve and spinal cord [J]. Glia, 1992, 5(3): 161-70. [67] MITCHELL L S, GILLESPIE S C, MCALLISTER F, et al. Developmental expression of major myelin protein genes in the CNS of X-linked hypomyelinating mutant rumpshaker [J]. Journal of neuroscience research, 1992, 33(2): 205-17. [68] BOISON D, STOFFEL W. Myelin-deficient rat: a point mutation in exon III (A----C, Thr75----Pro) of the myelin proteolipid protein causes dysmyelination and oligodendrocyte death [J]. The EMBO journal, 1989, 8(11): 3295-302. [69] REES D C, DEANTONIO L, EISENBERG D. Hydrophobic organization of membrane proteins [J]. Science (New York, NY), 1989, 245(4917): 510-3. [70] POPOT J L, PHAM DINH D, DAUTIGNY A. Major Myelin proteolipid: the 4-alpha-helix topology [J]. The Journal of membrane biology, 1991, 120(3): 233-46. [71] SISTERMANS E A, DE WIJS I J, DE COO R F, et al. A (G-to-A) mutation in the initiation codon of the proteolipid protein gene causing a relatively mild form of Pelizaeus-Merzbacher disease in a Dutch family [J]. Human genetics, 1996, 97(3): 337-9. [72] VAURS-BARRIERE C, WONG K, WEIBEL T D, et al. Insertion of mutant proteolipid protein results in missorting of myelin proteins [J]. Annals of neurology, 2003, 54(6): 769-80. [73] SIVAKUMAR K, SAMBUUGHIN N, SELENGE B, et al. Novel exon 3B proteolipid protein gene mutation causing late-onset spastic paraplegia type 2 with variable penetrance in female family members [J]. Annals of neurology, 1999, 45(5): 680-3. [74] NANCE M A, BOYADJIEV S, PRATT V M, et al. Adult-onset neurodegenerative disorder due to proteolipid protein gene mutation in the mother of a man with Pelizaeus-Merzbacher disease [J]. Neurology, 1996, 47(5): 1333-5. [75] BARON W, OZGEN H, KLUNDER B, et al. The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism: involvement of sulfatide [J]. Molecular and cellular biology, 2015, 35(1): 288-302. [76] COETZEE T, SUZUKI K, POPKO B. New perspectives on the function of myelin galactolipids [J]. Trends in neurosciences, 1998, 21(3): 126-30. [77] LEE A G. Myelin: Delivery by raft [J]. Current biology : CB, 2001, 11(2): R60-2. [78] FIELDS R D. Myelination: an overlooked mechanism of synaptic plasticity? [J]. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, 2005, 11(6): 528-31. [79] SIMONS K, IKONEN E. Functional rafts in cell membranes [J]. Nature, 1997, 387(6633): 569-72. [80] SIMONS K, VAN MEER G. Lipid sorting in epithelial cells [J]. Biochemistry, 1988, 27(17): 6197-202. [81] BIJLARD M, DE JONGE J C, KLUNDER B, et al. MAL Is a Regulator of the Recruitment of Myelin Protein PLP to Membrane Microdomains [J]. PloS one, 2016, 11(5): e0155317. [82] BOISON D, STOFFEL W. Disruption of the compacted myelin sheath of axons of the central nervous system in proteolipid protein-deficient mice [J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(24): 11709-13. [83] ROSENBLUTH J, STOFFEL W, SCHIFF R. Myelin structure in proteolipid protein (PLP)-null mouse spinal cord [J]. The Journal of comparative neurology, 1996, 371(2): 336-44. [84] GRIFFITHS I, KLUGMANN M, ANDERSON T, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin [J]. Science (New York, NY), 1998, 280(5369): 1610-3. [85] MCLAUGHLIN M, HUNTER D J, THOMSON C E, et al. Evidence for possible interactions between PLP and DM20 within the myelin sheath [J]. Glia, 2002, 39(1): 31-6. [86] SITTE H H, FARHAN H, JAVITCH J A. Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking [J]. Molecular interventions, 2004, 4(1): 38-47. [87] NG D P, DEBER C M. Modulation of the oligomerization of myelin proteolipid protein by transmembrane helix interaction motifs [J]. Biochemistry, 2010, 49(32): 6896-902. [88] MACKENZIE K R. Folding and stability of alpha-helical integral membrane proteins [J]. Chemical reviews, 2006, 106(5): 1931-77. [89] STENSON P D, MORT M, BALL E V, et al. The Human Gene Mutation Database: 2008 update [J]. Genome medicine, 2009, 1(1): 13. [90] DHAUNCHAK A S, COLMAN D R, NAVE K A. Misalignment of PLP/DM20 transmembrane domains determines protein misfolding in Pelizaeus-Merzbacher disease [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, 31(42): 14961-71. [91] NG D P, DEBER C M. Terminal residue hydrophobicity modulates transmembrane helix-helix interactions [J]. Biochemistry, 2014, 53(23): 3747-57. [92] CANNON K S, HEBERT D N, HELENIUS A. Glycan-dependent and -independent association of vesicular stomatitis virus G protein with calnexin [J]. The Journal of biological chemistry, 1996, 271(24): 14280-4. [93] DHAUNCHAK A S, NAVE K A. A common mechanism of PLP/DM20 misfolding causes cysteine-mediated endoplasmic reticulum retention in oligodendrocytes and Pelizaeus-Merzbacher disease [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(45): 17813-8. [94] M?BIUS W, PATZIG J, NAVE K A, et al. Phylogeny of proteolipid proteins: divergence, constraints, and the evolution of novel functions in myelination and neuroprotection [J]. Neuron glia biology, 2008, 4(2): 111-27. [95] BONGARZONE E R, JACOBS E, SCHONMANN V, et al. Differential sensitivity in the survival of oligodendrocyte cell lines to overexpression of myelin proteolipid protein gene products [J]. Journal of neuroscience research, 2001, 65(6): 485-92. [96] SWANTON E, HIGH S, WOODMAN P. Role of calnexin in the glycan-independent quality control of proteolipid protein [J]. The EMBO journal, 2003, 22(12): 2948-58. [97] ELLGAARD L, HELENIUS A. Quality control in the endoplasmic reticulum [J]. Nature reviews Molecular cell biology, 2003, 4(3): 181-91. [98] SOUTHWOOD C M, GARBERN J, JIANG W, et al. The unfolded protein response modulates disease severity in Pelizaeus-Merzbacher disease [J]. Neuron, 2002, 36(4): 585-96. [99] GOW A, SOUTHWOOD C M, LAZZARINI R A. Disrupted proteolipid protein trafficking results in oligodendrocyte apoptosis in an animal model of Pelizaeus-Merzbacher disease [J]. The Journal of cell biology, 1998, 140(4): 925-34. [100] SZEGEZDI E, LOGUE S E, GORMAN A M, et al. Mediators of endoplasmic reticulum stress-induced apoptosis [J]. EMBO reports, 2006, 7(9): 880-5. [101] SCHR?DER M, KAUFMAN R J. The mammalian unfolded protein response [J]. Annual review of biochemistry, 2005, 74(739-89. [102] YAMAMOTO K, SATO T, MATSUI T, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1 [J]. Developmental cell, 2007, 13(3): 365-76. [103] YOSHIDA H, MATSUI T, YAMAMOTO A, et al. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor [J]. Cell, 2001, 107(7): 881-91. [104] NUMATA Y, MORIMURA T, NAKAMURA S, et al. Depletion of molecular chaperones from the endoplasmic reticulum and fragmentation of the Golgi apparatus associated with pathogenesis in Pelizaeus-Merzbacher disease [J]. The Journal of biological chemistry, 2013, 288(11): 7451-66. [105] GOW A, LAZZARINI R A. A cellular mechanism governing the severity of Pelizaeus-Merzbacher disease [J]. Nature genetics, 1996, 13(4): 422-8. [106] GOW A, GRAGEROV A, GARD A, et al. Conservation of topology, but not conformation, of the proteolipid proteins of the myelin sheath [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 1997, 17(1): 181-9. [107] INOUE K, KHAJAVI M, OHYAMA T, et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations [J]. Nature genetics, 2004, 36(4): 361-9. [108] BOND C, SI X, CRISP M, et al. Family with Pelizaeus-Merzbacher disease/X-linked spastic paraplegia and a nonsense mutation in exon 6 of the proteolipid protein gene [J]. American journal of medical genetics, 1997, 71(3): 357-60. [109] HOBSON G M, HUANG Z, SPERLE K, et al. A PLP splicing abnormality is associated with an unusual presentation of PMD [J]. Annals of neurology, 2002, 52(4): 477-88. [110] SHY M E, HOBSON G, JAIN M, et al. Schwann cell expression of PLP1 but not DM20 is necessary to prevent neuropathy [J]. Annals of neurology, 2003, 53(3): 354-65. [111] OSAKA H, KAWANISHI C, INOUE K, et al. Pelizaeus-Merzbacher disease: three novel mutations and implication for locus heterogeneity [J]. Annals of neurology, 1999, 45(1): 59-64. [112] AOYAGI Y, KOBAYASHI H, TANAKA K, et al. A de novo splice donor site mutation causes in-frame deletion of 14 amino acids in the proteolipid protein in Pelizaeus-Merzbacher disease [J]. Annals of neurology, 1999, 46(1): 112-5. [113] HOBSON G M, DAVIS A P, STOWELL N C, et al. Mutations in noncoding regions of the proteolipid protein gene in Pelizaeus-Merzbacher disease [J]. Neurology, 2000, 55(8): 1089-96. [114] YOOL D A, EDGAR J M, MONTAGUE P, et al. The proteolipid protein gene and myelin disorders in man and animal models [J]. Human molecular genetics, 2000, 9(6): 987-92. [115] GRIFFITHS I, KLUGMANN M, ANDERSON T, et al. Current concepts of PLP and its role in the nervous system [J]. Microscopy research and technique, 1998, 41(5): 344-58. [116] INOUE K, OSAKA H, IMAIZUMI K, et al. Proteolipid protein gene duplications causing Pelizaeus-Merzbacher disease: molecular mechanism and phenotypic manifestations [J]. Annals of neurology, 1999, 45(5): 624-32. [117] LEE J A, INOUE K, CHEUNG S W, et al. Role of genomic architecture in PLP1 duplication causing Pelizaeus-Merzbacher disease [J]. Human molecular genetics, 2006, 15(14): 2250-65. [118] INOUE K, LUPSKI J R. Molecular mechanisms for genomic disorders [J]. Annual review of genomics and human genetics, 2002, 3(199-242. [119] LUPSKI J R. Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits [J]. Trends in genetics : TIG, 1998, 14(10): 417-22. [120] LEE J A, CARVALHO C M, LUPSKI J R. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders [J]. Cell, 2007, 131(7): 1235-47. [121] CARVALHO C M, LUPSKI J R. Mechanisms underlying structural variant formation in genomic disorders [J]. Nature reviews Genetics, 2016, 17(4): 224-38. [122] WOLF N I, SISTERMANS E A, CUNDALL M, et al. Three or more copies of the proteolipid protein gene PLP1 cause severe Pelizaeus-Merzbacher disease [J]. Brain : a journal of neurology, 2005, 128(Pt 4): 743-51. [123] BECK C R, CARVALHO C M, BANSER L, et al. Complex genomic rearrangements at the PLP1 locus include triplication and quadruplication [J]. PLoS genetics, 2015, 11(3): e1005050. [124] READHEAD C, SCHNEIDER A, GRIFFITHS I, et al. Premature arrest of myelin formation in transgenic mice with increased proteolipid protein gene dosage [J]. Neuron, 1994, 12(3): 583-95. [125] KAGAWA T, IKENAKA K, INOUE Y, et al. Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene [J]. Neuron, 1994, 13(2): 427-42. [126] INOUE Y, KAGAWA T, MATSUMURA Y, et al. Cell death of oligodendrocytes or demyelination induced by overexpression of proteolipid protein depending on expressed gene dosage [J]. Neuroscience research, 1996, 25(2): 161-72. [127] ANDERSON T J, SCHNEIDER A, BARRIE J A, et al. Late-onset neurodegeneration in mice with increased dosage of the proteolipid protein gene [J]. The Journal of comparative neurology, 1998, 394(4): 506-19. [128] CLARK K, SAKOWSKI L, SPERLE K, et al. Gait abnormalities and progressive myelin degeneration in a new murine model of Pelizaeus-Merzbacher disease with tandem genomic duplication [J]. The Journal of neuroscience : the official journal of the Society for Neuroscience, 2013, 33(29): 11788-99. [129] KR?MER E M, KOCH T, NIEHAUS A, et al. Oligodendrocytes direct glycosyl phosphatidylinositol-anchored proteins to the myelin sheath in glycosphingolipid-rich complexes [J]. The Journal of biological chemistry, 1997, 272(14): 8937-45. [130] KR?MER E M, KLEIN C, KOCH T, et al. Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination [J]. The Journal of biological chemistry, 1999, 274(41): 29042-9. [131] OSTERMEYER A G, BECKRICH B T, IVARSON K A, et al. Glycosphingolipids are not essential for formation of detergent-resistant membrane rafts in melanoma cells. methyl-beta-cyclodextrin does not affect cell surface transport of a GPI-anchored protein [J]. The Journal of biological chemistry, 1999, 274(48): 34459-66. [132] HüTTEMANN M, ZHANG Z, MULLINS C, et al. Different proteolipid protein mutants exhibit unique metabolic defects [J]. ASN neuro, 2009, 1(3): [133] CREGAN S P, DAWSON V L, SLACK R S. Role of AIF in caspase-dependent and caspase-independent cell death [J]. Oncogene, 2004, 23(16): 2785-96. [134] HAEBERLEIN S L. Mitochondrial function in apoptotic neuronal cell death [J]. Neurochemical research, 2004, 29(3): 521-30. [135] APPIKATLA S, BESSERT D, LEE I, et al. Insertion of proteolipid protein into oligodendrocyte mitochondria regulates extracellular pH and adenosine triphosphate [J]. Glia, 2014, 62(3): 356-73. [136] GARBERN J Y, CAMBI F, TANG X M, et al. Proteolipid protein is necessary in peripheral as well as central myelin [J]. Neuron, 1997, 19(1): 205-18. [137] JUREVICS H, HOSTETTLER J, SAMMOND D W, et al. Normal metabolism but different physical properties of myelin from mice deficient in proteolipid protein [J]. Journal of neuroscience research, 2003, 71(6): 826-34. [138] ROSENBLUTH J, NAVE K A, MIERZWA A, et al. Subtle myelin defects in PLP-null mice [J]. Glia, 2006, 54(3): 172-82. [139] GRIFFITHS I R, DICKINSON P, MONTAGUE P. Expression of the proteolipid protein gene in glial cells of the post-natal peripheral nervous system of rodents [J]. Neuropathology and applied neurobiology, 1995, 21(2): 97-110. [140] KHAJAVI M, INOUE K, LUPSKI J R. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease [J]. European journal of human genetics : EJHG, 2006, 14(10): 1074-81. [141] INOUE K, TANAKA H, SCAGLIA F, et al. Compensating for central nervous system dysmyelination: females with a proteolipid protein gene duplication and sustained clinical improvement [J]. Annals of neurology, 2001, 50(6): 747-54. [142] SAHER G, RUDOLPHI F, CORTHALS K, et al. Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet [J]. Nature medicine, 2012, 18(7): 1130-5. [143] KARIM S A, BARRIE J A, MCCULLOCH M C, et al. PLP/DM20 expression and turnover in a transgenic mouse model of Pelizaeus-Merzbacher disease [J]. Glia, 2010, 58(14): 1727-38. [144] UCHIDA N, CHEN K, DOHSE M, et al. Human neural stem cells induce functional myelination in mice with severe dysmyelination [J]. Science translational medicine, 2012, 4(155): 155ra36. [145] GUPTA N, HENRY R G, STROBER J, et al. Neural stem cell engraftment and myelination in the human brain [J]. Science translational medicine, 2012, 4(155): 155ra37. [146] EMBORG M E, LIU Y, XI J, et al. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain [J]. Cell reports, 2013, 3(3): 646-50. [147] NOBUTA H, YANG N, NG Y H, et al. Oligodendrocyte Death in Pelizaeus-Merzbacher Disease Is Rescued by Iron Chelation [J]. Cell stem cell, 2019, 25(4): 531-41.e6. [148] JI H, LI D, WU Y, et al. Hypomyelinating disorders in China: The clinical and genetic heterogeneity in 119 patients [J]. PloS one, 2018, 13(2): e0188869. [149] HURST S, GARBERN J, TREPANIER A, et al. Quantifying the carrier female phenotype in Pelizaeus-Merzbacher disease [J]. Genetics in medicine : official journal of the American College of Medical Genetics, 2006, 8(6): 371-8. [150] BALL R S. The Gesell Developmental Schedules: Arnold Gesell (1880-1961) [J]. Journal of abnormal child psychology, 1977, 5(3): 233-9. [151] MILNE S L, MCDONALD J L, COMINO E J. Alternate scoring of the Bayley-III improves prediction of performance on Griffiths Mental Development Scales before school entry in preschoolers with developmental concerns [J]. Child: care, health and development, 2015, 41(2): 203-12. [152] PALISANO R, ROSENBAUM P, WALTER S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy [J]. Developmental medicine and child neurology, 1997, 39(4): 214-23. [153] YUAN J, SONG J, ZHU D, et al. Lithium Treatment Is Safe in Children With Intellectual Disability [J]. Frontiers in molecular neuroscience, 2018, 11(425. [154] MIERZEWSKA H, JAMROZ E, MAZURCZAK T, et al. Pelizaeus-Merzbacher disease in patients with molecularly confirmed diagnosis [J]. Folia neuropathologica, 2016, 54(1): 59-65. [155] TORII T, MIYAMOTO Y, YAMAUCHI J, et al. Pelizaeus-Merzbacher disease: cellular pathogenesis and pharmacologic therapy [J]. Pediatrics international : official journal of the Japan Pediatric Society, 2014, 56(5): 659-66. [156] SHIMOJIMA K, INOUE T, HOSHINO A, et al. Comprehensive genetic analyses of PLP1 in patients with Pelizaeus-Merzbacher disease applied by array-CGH and fiber-FISH analyses identified new mutations and variable sizes of duplications [J]. Brain & development, 2010, 32(3): 171-9. [157] INOUE K, KANAI M, TANABE Y, et al. Prenatal interphase FISH diagnosis of PLP1 duplication associated with Pelizaeus-Merzbacher disease [J]. Prenatal diagnosis, 2001, 21(13): 1133-6. [158] SIDMAN R L, DICKIE M M, APPEL S H. MUTANT MICE (QUAKING AND JIMPY) WITH DEFICIENT MYELINATION IN THE CENTRAL NERVOUS SYSTEM [J]. Science (New York, NY), 1964, 144(3616): 309-11. [159] HüBNER C A, ORTH U, SENNING A, et al. Seventeen novel PLP1 mutations in patients with Pelizaeus-Merzbacher disease [J]. Human mutation, 2005, 25(3): 321-2. [160] PRATT V M, TROFATTER J A, SCHINZEL A, et al. A new mutation in the proteolipid protein (PLP) gene in a German family with Pelizaeus-Merzbacher disease [J]. American journal of medical genetics, 1991, 38(1): 136-9. [161] WEIMBS T, DICK T, STOFFEL W, et al. A point mutation at the X-chromosomal proteolipid protein locus in Pelizaeus-Merzbacher disease leads to disruption of myelinogenesis [J]. Biological chemistry Hoppe-Seyler, 1990, 371(12): 1175-83. [162] COMBES P, BONNET-DUPEYRON M N, GAUTHIER-BARICHARD F, et al. PLP1 and GPM6B intragenic copy number analysis by MAPH in 262 patients with hypomyelinating leukodystrophies: Identification of one partial triplication and two partial deletions of PLP1 [J]. Neurogenetics, 2006, 7(1): 31-7. [163] MüLLER C B, ENDERLEIN J. Image scanning microscopy [J]. Physical review letters, 2010, 104(19): 198101. [164] YORK A G, CHANDRIS P, NOGARE D D, et al. Instant super-resolution imaging in live cells and embryos via analog image processing [J]. Nature methods, 2013, 10(11): 1122-6. [165] FRIEDMAN J R, VOELTZ G K. The ER in 3D: a multifunctional dynamic membrane network [J]. Trends in cell biology, 2011, 21(12): 709-17. [166] JIAN F, CHEN D, CHEN L, et al. Sam50 Regulates PINK1-Parkin-Mediated Mitophagy by Controlling PINK1 Stability and Mitochondrial Morphology [J]. Cell reports, 2018, 23(10): 2989-3005. [167] THOMSON C E, MONTAGUE P, JUNG M, et al. Phenotypic severity of murine Plp mutants reflects in vivo and in vitro variations in transport of PLP isoproteins [J]. Glia, 1997, 20(4): 322-32. [168] INOUE K. Cellular Pathology of Pelizaeus-Merzbacher Disease Involving Chaperones Associated with Endoplasmic Reticulum Stress [J]. Frontiers in molecular biosciences, 2017, 4(7. [169] NUMASAWA-KUROIWA Y, OKADA Y, SHIBATA S, et al. Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes [J]. Stem Cell Reports, 2014, 2(5): 648-61. [170] SIMONS M, KRAMER E M, MACCHI P, et al. Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease [J]. The Journal of cell biology, 2002, 157(2): 327-36. [171] DRANKA B P, BENAVIDES G A, DIERS A R, et al. Assessing bioenergetic function in response to oxidative stress by metabolic profiling [J]. Free radical biology & medicine, 2011, 51(9): 1621-35. [172] BRAND M D, NICHOLLS D G. Assessing mitochondrial dysfunction in cells [J]. Biochem J, 2011, 435(2): 297-312. [173] RUIZ M, BEGOU M, LAUNAY N, et al. Oxidative stress and mitochondrial dynamics malfunction are linked in Pelizaeus-Merzbacher disease [J]. Brain pathology (Zurich, Switzerland), 2018, 28(5): 611-30. [174] WU W, LI W, CHEN H, et al. FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy [J]. Autophagy, 2016, 12(9): 1675-6. [175] VOELTZ G K, ROLLS M M, RAPOPORT T A. Structural organization of the endoplasmic reticulum [J]. EMBO reports, 2002, 3(10): 944-50. [176] BORGESE N, FRANCOLINI M, SNAPP E. Endoplasmic reticulum architecture: structures in flux [J]. Current opinion in cell biology, 2006, 18(4): 358-64. [177] SHIBATA Y, VOELTZ G K, RAPOPORT T A. Rough sheets and smooth tubules [J]. Cell, 2006, 126(3): 435-9. [178] SHIBATA Y, SHEMESH T, PRINZ W A, et al. Mechanisms determining the morphology of the peripheral ER [J]. Cell, 2010, 143(5): 774-88. [179] WEST M, ZUREK N, HOENGER A, et al. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature [J]. The Journal of cell biology, 2011, 193(2): 333-46. [180] APETRI A C, HORWICH A L. Chaperonin chamber accelerates protein folding through passive action of preventing aggregation [J]. Proc Natl Acad Sci U S A, 2008, 105(45): 17351-5. [181] GREEN D R, KROEMER G. The pathophysiology of mitochondrial cell death [J]. Science (New York, NY), 2004, 305(5684): 626-9. [182] RIZZUTO R, PINTON P, CARRINGTON W, et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses [J]. Science (New York, NY), 1998, 280(5370): 1763-6. [183] FRIEDMAN J R, WEBSTER B M, MASTRONARDE D N, et al. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules [J]. The Journal of cell biology, 2010, 190(3): 363-75. [184] SOMAYAJULU M, BESSERT D A, HüTTEMANN M, et al. Insertion of proteolipid protein into mitochondria but not DM20 regulates metabolism of cells [J]. Neurosci Lett, 2018, 678(90-8. [185] KR?MER E M, SCHARDT A, NAVE K A. Membrane traffic in myelinating oligodendrocytes [J]. Microscopy research and technique, 2001, 52(6): 656-71. [186] KOUGA T, KOIZUME S, AOKI S, et al. Drug screening for Pelizaeus-Merzbacher disease by quantifying the total levels and membrane localization of PLP1 [J]. Molecular genetics and metabolism reports, 2019, 20(100474. [187] LI H, OKADA H, SUZUKI S, et al. Gene suppressing therapy for Pelizaeus-Merzbacher disease using artificial microRNA [J]. JCI insight, 2019, 4(10): [188] PRUKOP T, EPPLEN D B, NIENTIEDT T, et al. Progesterone antagonist therapy in a Pelizaeus-Merzbacher mouse model [J]. American journal of human genetics, 2014, 94(4): 533-46. [189] TANTZER S, SPERLE K, KENALEY K, et al. Morpholino Antisense Oligomers as a Potential Therapeutic Option for the Correction of Alternative Splicing in PMD, SPG2, and HEMS [J]. Molecular therapy Nucleic acids, 2018, 12(420-32. [190] YU L H, MORIMURA T, NUMATA Y, et al. Effect of curcumin in a mouse model of Pelizaeus-Merzbacher disease [J]. Molecular genetics and metabolism, 2012, 106(1): 108-14. [191] NOLTE S V, XU W, RENNEKAMPFF H O, et al. Diversity of fibroblasts--a review on implications for skin tissue engineering [J]. Cells, tissues, organs, 2008, 187(3): 165-76. [192] MANSBRIDGE J N, HANAWALT P C. Role of transforming growth factor beta in the maturation of human epidermal keratinocytes [J]. The Journal of investigative dermatology, 1988, 90(3): 336-41. [193] CSORDáS G, RENKEN C, VáRNAI P, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria [J]. The Journal of cell biology, 2006, 174(7): 915-21.
﹀
|
分类号: |
R748
|
馆藏位置: |
医临时馆
|
开放日期: |
2021-07-12
|