- 无标题文档
查看论文信息

论文题名(中文):

 中药九里香的化学成分研究及基于 LC/MS的九里香属植物化学成分的对比分析    

作者:

 梁海珍    

学号:

 B1611110093    

论文语种:

 chi    

学科名称:

 理学 - 药学(可授医学、理学学位) - 生药学    

学生类型:

 博士    

学校:

 北京大学医学部    

院系:

 药学院    

专业:

 生药学    

第一导师姓名:

 姜勇    

论文完成日期:

 2021-03-21    

论文答辩日期:

 2021-05-25    

论文题名(外文):

 Study on the chemical constituents of Murrayae Folium et Cacumen and comparative analysis of the chemical constituents of genus Murraya based on LC/MS    

关键词(中文):

 多基原中药 ; 九里香属 ; 中药九里香 ; 化学成分组 ; 指纹图谱 ; 含量测定 ; 广泛靶向定量次生代谢组学 ; 直接进样质谱技术 ; 定量结构-色谱保留关系    

关键词(外文):

 Multi-source TCM ; Murraya exotica L. ; Murraya paniculata (L.) Jack ; Chemome comparison ; HPLC fingerprint ; Widely targeted metabolomics ; Direct infusion mass spectrometry technology ; Quantitative structure chromatographic retention relationship    

论文文摘(中文):

芸香科Rutaceae九里香属Murraya根据其植物形态和所含化学成分类型分为九里香组Sect. Murraya和棕茎组Sect. Bergera。九里香组植物中富含香豆素类和多甲氧基黄酮类化合物,而棕茎组植物富含咔唑生物碱。目前关于该属的研究主要集中于个别种植物的化学成分的分离和生物活性的初步筛选,并没有对该属植物进行化学成分的系统分析和比较研究。

九里香属植物在东南亚地区被广泛药用,其中药用最多的为九里香组的植物九里香(Murraya exotica L.)和千里香(Murraya paniculata (L.) Jack)。《中国药典》规定,九里香M. exotica和千里香M. paniculata的干燥叶和带叶嫩枝可作为中药九里香(Murrayae Folium et Cacumen, MFC)的基原使用,是一种典型的多基原中药。但关于两种基原植物化学成分和药效的异同性,却未见报道,给二者临床的等同使用带来疑问和安全隐患。为了比较中药九里香两种基原植物化学成分的异同,本论文对九里香M. exotica和千里香M. paniculata的化学成分进行了系统分离,并基于指纹图谱和广泛靶向定量代谢组学技术对九里香和千里香的化学成分组进行了全面分析和比较。此外,建立了直接进样质谱技术结合定量结构-色谱保留关系模型对九里香属植物进行了化学成分的系统分析和比较,取得了以下成果:

1. 文献综述

系统综述了中药多基原的现状及中药九里香化学成分、生物活性以及质量控制的研究进展。

2. 九里香和千里香两种基原植物的化学成分和生物活性研究

以薄层色谱(TLC)、高效液相色谱-二极管阵列检测器(HPLC-DAD)、高效液相色谱与质谱联用(LC-MS)技术为指导,分别针对九里香和千里香嫩枝叶95%乙醇提取物的化学成分开展研究。通过采用硅胶、ODS-C18、Sephadex LH-20柱色谱,结合半制备型高效液相(semipreparative HPLC)和红外光谱(IR)、紫外光谱(UV)、核磁共振(NMR)、高分辨质谱(HRMS)等光谱技术,共从两种植物的二氯甲烷萃取部位总共分离鉴定了化合物156个,其中从九里香M. exotica中分离鉴定了化合物93个,包括新化合物15个(1a*/1b*−13*);从千里香M. paniculata中分离鉴定了化合物90个,包括新化合物8个(14a*/14b*−19*)。同时,首次从九里香属中分离化合物37个,首次从九里香中分离化合物36个,首次从千里香中分离化合物26个。通过密度泛函理论化学量子计算电子圆二色谱(ECD)、过渡金属试剂诱导ECD法、CD光谱激子手性法和比旋光值等方法确定了新化合物的绝对构型。其中,化合物1a*/1b*−2a*/2b*为2对罕见的C-8位异戊烯基环合成三元环的香豆素对映异构体,14a*/14b*为一对首次报道的C-8位具有2-氧代-1,3-二氧环戊烷单元的香豆素,18a*/18b*为一对具有高度氧化螺环戊酮骨架的化合物。这些化合物通过手性HPLC拆分,得到了各自光学纯的化合物。此外,化合物3*和4*为一类罕见的8-甲基苯并香豆素骨架类型,化合物5*为一个结构新颖的通过原酸酯片段连接的香豆素二聚体。

结合中药九里香的传统功效和文献报道,我们对分离的化合物进行了抗炎活性研究。结果显示化合物4*、5*、10*、82、110、113、116、117和123具有一定的抑制LPS诱导的小鼠巨噬细胞(RAW 264.7)/小胶质细胞(BV-2)中NO生成活性。

3. 中药九里香的指纹图谱分析与含量测定研究

本论文建立了一种可以同时检测九里香两种基原植物化学成分的指纹图谱方法,对98批中药九里香药材进行了测定,利用相似度评价软件生成对照指纹图谱并进行相似度比较。利用高效液相色谱-离子阱-飞行时间串联质谱(HPLC-IT-TOF-MS),结合对照品比对,从对照指纹图谱中鉴定了52个主要色谱峰。进一步采用多种化学计量学方法对不同产地、不同批次样品的指纹图谱进行分析。聚类分析(HCA)、主成分分析(PCA)、正交偏最小二乘法-判别分析(OPLS-DA)结果均表明九里香和千里香之间存在显著差异,结合S-plot和变量重要性投影值(VIP),筛选鉴定出对九里香和千里香分类贡献较大的13个主要差异成分。

根据指纹图谱的分析结果,选择了九里香两种基原植物中共有度最高的一个主成分——脱水长叶九里香内酯为指标,建立该成分的含量测定方法,并对采集的98批九里香和千里香样品进行了测定。结果显示,该方法精密度、重复性、稳定性及准确度良好;但在不同基原、不同产地、不同批次药材中,该成分含量具有较大差异(0~3.40%),其中千里香中脱水长叶九里香内酯含量明显高于九里香,产地以广东省为佳。

4. 基于广泛靶向定量代谢组学技术的九里香两种基原植物的对比研究

考虑到UV检测器的局限性,本论文又建立了基于LC-MS的广泛靶向定量代谢物组学技术,对九里香和千里香的化学成分进行全面定性、定量分析。

首先,采用LC-Qtrap-MS的多种扫描策略和鉴定方法,对两种基原植物的化学成分进行了全面、深度分析。以前期分离的标准品为基础,总结了植物中两类主成分——多甲氧基黄酮和香豆素的二级质谱裂解和最佳碰撞能规律,构建了UNIFI数据库和QSRR模型,实现对已知化合物的快速检识和未知化合物保留时间的精准预测。应用该方法,从九里香检出并鉴定209个化合物,从千里香检出并鉴定212个化合物。通过对两种植物检出成分的对比,发现两种植物共有成分为101个,其中黄酮类化合物28个,香豆素类化合物73个。上述结果表明,两种植物在化学成分上具有较大的相似性。

在定性分析基础上,进一步采用Qtrap-MS独特的sMRM扫描模式,对76个化合物进行了定量分析。方法学考察结果表明,该方法重现性、精密度和准确度良好。利用该方法对98批九里香和千里香药材进行了含量测定。结果显示,不同产地的药材含量差异较大,九里香M. exotica中多甲氧基黄酮和香豆素的含量范围分别为0.145-0.465%和2.436-5.221%,千里香M. paniculata中多甲氧基黄酮含量和香豆素的含量范围分别为0.058-13.562%和0.008-4.295%。进一步分析发现,76个分析物中有41个是两种植物共同含有的,35个是各自独有的,其中共有成分的含量分别占据了九里香和千里香总待测成分的82%和77%。上述结果表明,两种基原植物的化学成分种类相似,都是以香豆素和黄酮为主,但每类成分的含量具有一定的差异,但是共有成分的总含量比较相似,占到了主成分的80%左右。

本课题还采用多元统计分析对两种植物的化学成分进行进一步的分析。以九里香M. exotica和千里香M. paniculata的sMRM数据为研究对象,构建数据矩阵,结果表明,九里香和千里香的化学成分存在一定差异,由S-plot和VIP值结合共找到29个差异标志物,22个用标准品进行了验证和含量测定。其中,12个变量在九里香中含量较高,多为香豆素类成分,10个变量在千里香中含量较高,均为黄酮类成分。

以上结果表明,九里香和千里香两种基原植物在化学成分上具有较高的相似性,虽然单个成分的含量上存在一定的差异,九里香中主要含有香豆素,千里香中主要含多甲氧基黄酮,但二者共有成分的含量很高,为二者同作为九里香的基原植物使用提供了可靠理论依据

5. 基于直接进样质谱技术的九里香属植物的快速分析

采用直接进样质谱技术(DI-MS)结合Qtrap质谱特有的step wise MIM扫描方式,对8种九里香属植物进行了快速分析。每种样品仅需5 min,便可检测约600个化合物。通过对8种植物正离子模式下的MS图分析,发现DI-MS技术能直观地反映出不同植物中的主成分类别。多元统计分析结果表明,九里香组sect. Murraya和棕茎组sect. Bergera植物各自聚集,分类明显,说明两个组植物间的化学成分的确存在较大差异。上述研究结果证实,DI-MS技术可用于物种的快速识别与区分。

6. 基于定量结构-色谱保留关系的棕茎组植物的对比研究

本课题采用UPLC/Qtrap-MS的多种质谱扫描策略对5种棕茎组植物:小叶九里香M. microphylla、广西九里香M. kwangsiensis、四数九里香M. tetramera、豆叶九里香M. euchrestifolia与调料九里香M. koenigii,进行了化学成分的系统分析。采用LC-MS对100个咔唑生物碱标准品进行保留时间数据的采集,并利用ACD软件构建了相关性高、预测能力强的QSRR模型,结合前期总结的咔唑生物碱的质谱裂解规律对五种植物的化学成分进行了精准鉴定。共从棕茎组植物中检出511个化合物,包括297个咔唑生物碱类成分,153个香豆素类成分,33个黄酮及其糖苷类化合物,19个木脂素类化合物;共鉴定了385个化合物,其中92个化合物通过标准品指认。采用多元统计分析对五种棕茎组植物的化学成分进行分析。PCA和OPLS-DA分析结果表明,五种棕茎组植物均有各自的聚集区域,在化学成分上存在一定的差异。由S-plot和VIP值相结合共找到26个差异标志物。相关研究为咔唑生物碱的精准鉴别及棕茎属植物的分类提供了依据和参考。

文摘(外文):

The genus Murraya (Rutaceae) is divided into two sections, sect. Murraya and sect. Bergera, based on their morphological and chemical constituents. The sect. Murraya contains 8-prenylated coumarins and polymethoxylated flavonoids, while the sect. Bergera is chemically characterized by carbazole alkaloids. Up to now, the current researches on this genus mainly focus on the isolation of bioactive chemical compounds of some species and preliminary bioactivity screening of the isolates, and there is no systematic comparative analysis of the chemical constituents in the plants of this genus.

Many Murraya plants are widely used as a folk medicine in Southeast Asia. Among them, Murraya exotica L. and Murraya paniculata (L.) Jack are the two most used medicinal plants. The fresh leaves and twigs of these two plants are the official sources of Murrayae Folium et Cacumen (MFC) listed in the Chinese Pharmacopoeia, which is a representative traditional Chinese medicine (TCM) with two-plant sources. However, there is no available report concerning the comparative study on the chemome and pharmacodynamics of M. exotica and M. paniculata, which brings the confusion of clinic usage and quality control. In order to compare the chemical constituents of M. exotica and M. paniculata, phytochemical investigations of leaves and twigs of these two plants were performed, and a comprehensive comparative study of the chemical constituents was carried out based on the chromatographic fingerprint analysis and widely targeted quantitative metabolomics. Moreover, the direct infusion-mass spectrometry technique and quantitative structure retention relationship model were established to rapidly and systematically compare the chemical constituents of Murraya species. The following results have been achieved.

1. Literature review

First, the reported literature concerning the researches on multi-source TCMs, structural characteristics, bioactivities and quality control of MCF were reviewed to supply a reference for its further research and development.

2. Study on the chemical constituents and biological activities of M. exotica and M. paniculata

Phytochemical investigations on the 95% aqueous ethanol extract of M. exotica and M. paniculata guided by TLC, HPLC-DAD, and LC-MS led to the isolation of 23 new compounds (1a*/1b*−19*), together with 133 known analogues. Their structures were determined on the basis of the 1D, 2D NMR, and mass spectroscopic data. The absolute configurations of the compounds were assigned via ECD spectrum calculation, ECD data of the in situ formed transition metal complex, ECD exciton coupling method, as well as comparison of the specific optical rotations. Among the new compounds, compounds 1a*/1b* and 2a*/2b* are two pair of coumarin enantiomers with a cyclopropane unit at C-8 side chain; compounds 14a*/14b* are a pair of coumarin enantiomers with a 2-oxo-1,3-dioxolane unit in the C-8 side chain; compounds 18a*/18b* are a pair of spirocyclopentenone enantiomers. All these above racemic mixtures were separated by chiral HPLC to obtain the optically pure compounds. Besides, 3* and 4* are two undescribed 8-methylbenzo[h]coumarins; 5* is a bicoumarin that two coumarin moieties are connected by a rare orthoester structure.

All of the isolates were tested for their inhibition on NO production. Compounds 4*, 5*, 10*, 82, 110, 113, 116, 117 and 123 showed moderate inhibition against LPS-induced NO production in BV-2 microglial cells/RAW 264.7 cells (IC50 28.6–65.0 μM).

3. Study on the fingerprint analysis and content determination of phebalosin of M. exotica and M. paniculata

In order to systemically compare the chemical composition difference between M. exotica and M. paniculata, a fingerprint method for simultaneous determination of their comprehensive chemical constituents was established, and 98 batches of MCF were determined. The similarity of each fingerprint was evaluated with the corresponding reference fingerprint. Fifty-two main peaks of the fingerprints of two plants were identified by high-performance liquid chromatography coupled with ion trap-time-of-flight mass spectrometry (HPLC-IT-TOF-MS) and comparison with standards. The results showed that the HPLC fingerprints of M. exotica and M. paniculata were clearly divided into two categories by using hierarchical cluster analysis (HCA) and principal component analysis (PCA), and a total of 13 significantly differentiated markers were screened out by orthogonal partial least squares-discriminant analysis (OPLS-DA). The main constituents in M. exotica were disclosed as 7-methoxycoumarins, while polymethoxylated flavonoids were found as the major ones of M. paniculata.

In addition, a sensitive, accurate, and reliable method for the determination of phebalosin was established by using HPLC. The contents of phebalosin of 98 batches of MFC varied greatly from 0~3.400%. Meanwhile, there were differences in the content of MFC from different sources and different habitats. The content of phebalosin in M. paniculata was significantly higher than that in M. exotica. Among the four main habitats of MFC, Guangdong Province had the highest content of phebalosin.

4. Comparative analysis of the chemical constituents of M. exotica and M. paniculata based on widely targeted quantitative metabolomics

Due to the limitation of low sensitivity of UV detector, LC-MS-based widely targeted quantitative metabolomics was applied subsequently to conduct a comprehensive and in-depth comparative analysis of the chemical constituents of M. exotica and M. paniculata.

Firstly, the universal chemical information of two plants was obtained by UPLC/Qtrap-MS with various scan modes. Then, combined with an in house database, the proposed fragmentation patterns and the established quantitative structure chromatographic retention relationship (QSRR) model of various types of compounds, the chemical components of these two plants were accurately characterized. Finally, a total of 209 compounds were detected and identified from M. exotica, including 31 flavonoids and 178 coumarins; and 212 compounds were detected and identified from M. paniculata, including 100 flavonoids and 112 coumarins. Among them, 103 constituents, including 28 flavonoids and 75 coumarins, were obtained in both of these two plants.

Subsequently, a total of 76 main representative components were selected for absolute quantitative analysis. The method validation demonstrated that the proposed determination was precise, accurate, reproducible, and reliable. Then, 98 batches of samples were determined and the results showed that the contents of MFC from different sources and different habitats varied greatly. The content of total flavonoids and coumarins in M. exotica ranged from 0.145-0.465% and 2.436-5.221%, respectively; and in M. paniculata were in the range of 0.058-13.562% and 0.008-4.295%, respectively. Furthermore, 41 targeted analytes were obtained in both of two plants and their content accounted for 82% and 77% of the total 76 components of M. exotica and M. paniculata, respectively. It can be concluded that the types of chemical constituents of the two plants are similar; although there are differences in contents of specific components, the same constituents were dominant in these two plants.

Finally, the chemical composition from the two plants was differentiated with multivariate statistical analysis. The results showed that M. exotica and M. paniculata were clearly divided into two categories. A total of 29 differentiated markers were found out by combining S-plot and VIP values, and 22 of them were verified and determined with standard references. Among them, 12 chemical markers were more abundant in M. exotica, while 10 chemical markers were mainly existed in M. paniculata with high abundance.

The above results show that these two plants have high similarity in the type of chemical composition. Although there is a certain difference in the contents of some specific chemical constituents, for the main constituents of M. exotica are 7-methoxycoumarins, and the polymethoxylated flavonoids are the main constituents of M. paniculata, their same compounds have a high quantity in these two source plants. These supply theoretical basis for their official multi-source collection.

5. Rapid analysis of genus Murraya based on direct infusion mass spectrometry technology

In this study, direct infusion mass spectrometry (DI-MS) combined with the unique step wise MIM scan mode of Qtrap-MS was established to profile phytochemicals and discriminate between eight species of Murraya. Approximate 600 compounds could be detected in only 5 minutes for each sample. The characteristic MS diagrams of eight plants in positive ion mode were analyzed. The results of PCA showed that sect. Murraya and sect. Bergera were clearly divided into two categories, suggesting that there was a certain difference in the chemical compositions between these two groups.

6. Comparative study of sect. Bergera plants based on quantitative structure chromatographic retention relationship

Chemical constituents of five plants from sect. Bergera were investigated by UPLC/Qtrap-MS. The retention time data of 100 standard carbazole alkaloids were collected by LC-MS, and a QSRR model with high correlation and strong prediction was constructed by ACD software. Then the chemical components of five plants were accurately identified by combining with the proposed fragmentation patterns and the model. A total of 511 compounds were identified from five plants of sect. Bergera, including 297 carbazole alkaloids, 153 coumarins, 33 flavonoids and their glycosides, and 19 lignins. Among them, 385 compounds were characterized, 92 of which were confirmed with authentic compounds. The chemical composition from the five plants was differentiated with multivariate statistical analysis. The results of PCA and OPLS-DA analysis showed that there were some differences in chemical composition of five species. And a total of 26 differential markers were found out by the combination of S-plot and VIP value. The related study supply reference for the precise identification of calbazole alkaloids and classification of sect. Bergera.

论文目录:
前 言 1
第一章 文献综述 3
1.1中药多基原的研究现状 3
1.2 九里香的文献考证 6
1.3 九里香化学成分的研究进展 6
1.4 九里香药理活性的研究进展 21
1.5 九里香的质量控制研究 23
1.6 总结与展望 24
第二章 九里香的化学成分及其生物活性研究 25
2.1 前言 25
2.2 研究结果 25
2.3 化合物的结构鉴定 35
2.4 化合物生物活性研究 68
2.5 实验部分 71
第三章 九里香的指纹图谱分析与指标性成分的含量测定研究 148
3.1 前言 148
3.2 九里香药材指纹图谱的建立 149
3.3 九里香中脱水长叶九里香内酯的含量测定 166
第四章 基于广泛靶向定量代谢组学技术的九里香两种基原植物的对比研究 175
4.1 前言 175
4.2 基于UNIFI中药整体解决方案的九里香两种基原植物主成分的快速鉴定 176
4.3 九里香中代表性化合物的质谱裂解规律及诊断离子的建立 179
4.4 UPLC/Qtrap-MS质谱策略的建立及九里香两种基原植物化学成分的全面表征 197
4.5 基于UPLC/Qtrap-MS的九里香两种基原植物化学成分的定量分析 207
4.6 小结 227
第五章 基于直接进样质谱技术的九里香属植物的快速分析 229
5.1 前言 229
5.2 实验仪器与材料 229
5.3 药材的收集与鉴定 229
5.4 实验方法 230
5.5 实验结果 231
第六章 基于定量结构-色谱保留关系的九里香属棕茎组植物的对比研究 236
6.1 前言 236
6.2 实验仪器与材料 236
6.3 实验方法 236
6.4 实验结果 238
第七章 总结与讨论 248
7.1 文献综述 248
7.2 九里香和千里香的化学成分研究和活性筛选 248
7.3 九里香和千里香化学成分的对比分析 248
7.4 基于直接进样质谱技术和定量结构-色谱保留关系的九里香属植物对比分析 250
7.5 存在的问题及展望 251
参考文献 252
附录 A 新化合物的光谱数据 264
附录 B 九里香属的化学成分组信息 328
致 谢 401
北京大学学位论文原创性声明和使用授权说明 403
个人简历 407

参考文献:

[1] 毕培曦,江润祥,吴锦洪,等. 国产芸香科九里香属化学分类. 植物分类学报,1986, 24(3): 186–192.

[2] Samuel R, Ehrendorfer F, Chase M W, et al. Phylogenetic analyses of Aurantioideae (Rutaceae) based on non-coding plastid DNA sequences and phytochemical features. Plant Biol., 2001, 3: 77?87.

[3] Kong Y C, Cheng K F, Ng K H, et al. A chemotaxonomic division of Murraya based on the distribution of the alkaloids yuehchukene and girinimbine. Biochem. Syst. Ecol., 1986, 14: 491–497.

[4] 国家药典委员会.中华人民共和国药典.一部. 北京:化学工业出版社,2015.

[5] 石典花,张军,孙立立. 基于3种多基源饮片质量考察谈等量性研究的必要性. 中华中医药杂志,2018, 33(1): 321?325.

[6] 朱忠华,肖梦媛,罗超,等. 基于中国药典中药品种变化的研究. 中药材,2017, 40(1): 58?63.

[7] 郝近大,谢宗万. 香薷药用品种的延续与变迁. 中国医药学报,1994, 9(6): 25?28.

[8] 李佳蔚,周婉,李俊松. 《中华人民共和国药典》中肉苁蓉的基源考证. 中华中医药学刊,2014, 32(7): 1756?1760.

[9] Jiang Y, Tu P F. Analysis of chemical constituents in Cistanche species. J. Chromatogr. A., 2009, 1216(11): 1970?1979.

[10] 贺翠,范巧佳,宋民宪,等. 多基原中药材对中成药的影响. 华西药学杂志,2017, 32(5): 559?562.

[11] 杨倩茹,赵媛媛,郝江波,等. 金银花与山银花化学成分及其差异的研究进展. 中国中药杂志,2016, 41(7): 1204?1211.

[12] 冯雅兰,董青,庾佳苗,等. 金银花与山银花之“争”. 陕西农业科学,2018, 64(7): 90?95.

[13] 刘宇灵,付赛,樊丽姣,等. 南北五味子化学成分、药理作用等方面差异的研究进展. 中国实验方剂学杂志,2017, 23(12): 236?242.

[14] 柯华香,李化,苏建春,等. 南北五味子中木脂素类成分含量的比较. 中国实验方剂学杂志,2015,21 (17): 40?43.

[15] 黄成就. 中国芸香科植物初步研究. 植物分类学报,1959, (8): 96?104.

[16] 黄成就. 中国芸香科植物资料. 植物分类学报,1978, 16(2): 85.

[17] Ito C, Furukawa H. Constituents of Murraya exotica L. Structure elucidation of new coumarins. Chem. Pharm. Bull., 1987, 35: 4277?4285.

[18] Negi N, Abou-Dough A M, Kurosawa M, et al. Coumarins from Murraya exotica collected in Egypt. Nat. Prod. Commun., 2015, 10(4): 617?620.

[19] Liu B Y, Zhang C, Zeng K W, et al. Anti-inflammatory prenylated phenylpropenols and coumarin derivatives from Murraya exotica. J. Nat. Prod., 2018, 81(1): 22?23.

[20] Lin J K, Wu T S. Constituents of flowers of Murraya paniculata. J. Chin. Chem. Soc., 1994, 41: 213?216.

[21] Imai F, Kinoshita T, Sankawa U. New coumarin derivatives from Murraya paniculata. Shoyakugaku Zasshi, 1987, 41: 157?158.

[22] Wu T S, Liou M J, Kuoh C S. Coumarins of the flowers of Murraya paniculata. Phytochemistry, 1989, 28: 293?294.

[23] Wu T S, Lin C N, Yang L K, et al. Studies on the constituents of Murrya paniculata Jack. J. Chin. Chem. Soc., 1975, 22: 163?165.

[24] Imai F, Itoh K, Kishibuchi N, et al. Constituents of the root bark of Murraya paniculata collected in Indonesia. Chem. Pharm. Bull., 1989, 37: 119?123.

[25] Bose P K, Mookerjee A. Natural glucosides. I. The constitution of the glucoside present in Murraya exotica. J. Indian Chem. Soc., 1937, 14: 489?491.

[26] Wang X T, Liang H Z, Zeng K W, et al. Panitins A-G: coumarin derivatives from Murraya paniculata from Guangxi Province, China show variable NO inhibitory activity. Phytochemistry, 2019, 162: 224?231.

[27] Kinoshita T, Firman K. Prenylcoumarin derivatives from the leaves of an Indonesian medicinal plant Murraya paniulata (Rutaceae). Chem. Pharm. Bull., 1996, 44, 1261?1262.

[28] Ramstad E, Lin W-N C, Lin T J, et al. Coumurrayin, a new coumarin from Murraya paniculata (L.) Jack. Tetrahedron Lett., 1968, 37: 811?813.

[29] Li X M, Jiang X J, Yang K, et al. Prenylated coumarins from Heracleum stenopterum, Peucedanum praeruptorum, Clausena lansium, and Murraya paniculata. Natur Prod & Bioprosp, 2016, 6(5): 233?237.

[30] Ito C, Furukawa H. Three new coumarins from Murraya exotica. Heterocycles, 1987, 26: 1731?1734.

[31] Jiang Z, Yang J N, Pang Y Q, et al. Bioactivity-guided fast screen and identification of cancer metastasis chemopreventive components from raw extracts of Murraya exotica. J. Pharm. Biomed., 2015, 107: 341?345.

[32] Ito C, Furukawa H. Three new coumarins from the leaves of Murraya paniculata. Heterocycles, 1987, 26: 2959?2962.

[33] Lakshmi M V, Ratnam C V, Rao N V S. 7-Methoxy-8-(3-butenyl-3-methyl-2- oxo)-coumarin, a new coumarin from Murraya exotica. Indian J. Chem., 1972, 10: 564?565.

[34] Raj K, Misra S C., Kapil R S, et al. Coumarins from Murraya paniculata. Phytochemistry, 1976, 15: 1787.

[35] Saied S, Nizami S S, Anis I. Two new coumarins from Murraya paniculata. J. Asian Nat. Prod. Res., 2008, 10: 515?519.

[36] Ito C, Furukawa, H. Two new coumarins from Murraya plants. Chem. Pharm. Bull., 1989, 37: 819?820.

[37] Barik B R, Dey A K, Das P C, et al. Coumarins of Murraya exotica. Absolute configuration of auraptenol. Phytochemistry, 1983, 22: 792?794.

[38] Negi N, Ochi A, Kurosawa M, et al. Two new dimeric coumarins isolated from Murraya exotica. Chem. Pharm. Bull., 2005, 53: 1180?1182.

[39] Yang J., Su Y. Studies on the chemical constituents of Murraya paniculata (L.) Jack. Acta Pharm. Sin., 1983, 18: 760?765.

[40] Ito C, Furulawa H, Ishiii H, et al. The chemical composition of Murraya panicuata. The structure of five new coumarins and one new alkaloid and the stereochemistry of murranagatin and related coumarins. J. Chem. Soc. Perkin Trans. 1, 1990, 2047.

[41] Choudhary M I., Azizuddin Khalid A, Sultani S Z, et al. A new coumarin from Murraya paniculata. Planta Med. 2002, 68: 81?83.

[42] Barik B R, Kundu A B. A cinnamic acid derivative and a coumarin from Murraya exotica. Phytochemistry, 1987, 26: 3319?3321.

[43] Saeed S, Shah S, Mehmood R, et al. Paniculacin, a new coumarin derivative from Murraya paniculata. J. Asian. Nat. Prod. Res., 2011, 13(8): 724?727.

[44] Julaeha E, Supratman U, Mukhtar M R, et al. Meranzin hydrate from Muraya paniculata. Acta Cryst., 2010. E66, o620.

[45] Manandhar M D. 8-Substituted 7-methoxycoumarins from Murraya exotica Linn. Indian J. Chem., 1980, 19B: 1006?1008.

[46] Imai F, Kinoshita T, Sankawa U. Constituents of the leaves of Murraya paniculata collected in Taiwan. Chem. Pharm. Bull., 1989, 37: 358?362.

[47] Barik B R, Dey A K, Chatterjee A. Murrayatin, a coumarin from Murraya exotica. Phytochemistry, 1983, 22: 2273?2275.

[48] Rahman A, Shabbir M, Sultani S Z, et al. Cinnamates and coumarins from the leaves of Murraya paniculata. Phytochemistry, 1997, 44: 683?685.

[49] Chakraborty D P, Chowdhury B K, Das B C. Mexoticin, a new coumarin from Murraya exotica L. Tetrahedron Lett., 1967, 36: 3471?3473.

[50] Yang J, Du M. Constituents of Murraya paniculata (L.) Jack grown in Hainan [China]. Acta Chem., Sin., 1984, 42: 1308?1311.

[51] Wu T S. Coumarins from the leaves of Murraya paniculata. Phytochemistry, 1988, 27: 2357?58.

[52] Steck W. Paniculatin, a new coumarin from Murraya paniculata (L.) Jack. Canadian J. Chem., 1972, 50: 443?445.

[53] Jiwajinda S, Santisopasri V, Ohigashi H. Coumarin-related compounds as plant growth inhibitors from two Rutaceous plants in Thailand. Biosci. Biotechnol. Biochem., 2000, 64: 420?423.

[54] Sanyal P K, Basak A, Barua A K, et al. Chemical examination of the leaves of Murraya paniculata. J. Indian Chem. Soc., 1975, 52: 1213?1214.

[55] Bishay D W, El-Sayyad S M, Abdel-Hafiz M A, et al. Phytochemical study of Murraya exotica L. cultivated in Egypt. III. Coumarins and cycloartenols of the leaves. Bull. Pharm. Sci., 1988, 11: 105?121.

[56] Ahmad Z A, Begum S. 3-(1,1-dimethylallyl)xanthyletin from Murraya exotica. Indian Drugs, 1986, 24: 64.

[57] Ganguly S N, Ghosh S, Basak A. Coumarin from Murraya paniculata. Trans. Bose Res. Inst., 1977, 40: 123?126.

[58] Chakraborty D P, Roy S, Chakraborty A, et al. Structure and synthesis of mexolide, a new antibiotic dicoumarin from Murraya exotica Linn. [Syn. M. Paniculata (L.) Jack.]. Tetrahedron, 1980, 36: 3563?3564.

[59] Liu B Y, Zhang C, Zeng K W, et al. Exotines A and B, two heterodimers of isopentenyl-substituted indole and coumarin derivatives from Murraya exotica. Org. Lett., 2015, 17: 4380?4383.

[60] Wang X T, Zeng K W, Zhao M B, et al. Three new indole alkaloid derivatives from the roots of Murraya paniculata. J. Asian. Nat. Prod. Res., 2017, 20: 201?208.

[61] Kinoshita T, Firman K. Highly oxygenated flavonoids from Murraya paniculata. Phytochemistry, 1996, 42: 1207–1210.

[62] Zhang Y., Li J, Zhou S X, et al. Polymethoxylated flavonoids from the leaves of Murraya paniculata. Chin. Pharm. J., 2010, 45: 1139–1141.

[63] Shan J, Wang X Z., Ma Y D, et al. Studies on flavonoids from leaves of Murraya panaculata L. Chin. Pharm. J., 2010, 45: 1910–1912.

[64] Zhang J Y, Lu J Q, Wang F, et al. A strategy of EIC-MS coupled with diagnostic product ions analysis for efficient discovery of new hydroxylated polymethoxyflavonoid glycosides from the leaves of Murraya paniculata L. using HPLC-DAD-MS/MS. Anal. Methods., 2013, 5(11): 2880–2891.

[65] 王晓中. 九里香叶黄酮类成分的研究. 吉林大学,2007.

[66] Li P, Zhang Y, Wang Z, et al. A novel flavone from the leaves of Murraya paniculata. Chem. Nat. Compd+., 2018, 54: 1061–1063.

[67] Kinoshita T, Firman K. Myricetin 5,7,3',4',5'-pentamethyl ether and other methylated flavonoids from Murraya paniculata. Phytochemistry, 1997, 45: 179–181.

[68] Ferracin R J, Da Silva M F d G F, Fernandes J B, et al. Flavonoids from the fruits of Murraya paniculata. Phytochemistry, 1998, 47:393–396.

[69] Silva L B, Silva U L L, Mahendran M, et al. Flavonoids of Murraya paniculata (Linn.) Jack. J. Natn. Sci. Coun. Sri Lanka, 1980, 8: 123–125.

[70] Desoky E K. Phytochemical study of Murraya exotica L. (Rutaceae) growing in Egypt: methoxylated flavones. Bull. Fac. Pharm., 1992, 30: 287–292.

[71] Bishay D W, El-Sayyad S M, Abd El-Hafiz M A, et al. Phytochemical study of Murraya exotica L. (Rutaceae). I-methoxylated flavonoids of the leaves. Bull. Pharm. Sci., 1987, 10: 55–70.

[72] W T S, Chan Y Y, Leu Y L, et al. A flavonoid and indole alkaloid from flowers of Murraya paniculata. Phytochemistry, 1994, 37: 287?288.

[73] Joshi B S, Kamat V N. Isolation of 3,3',4',5,5',7,8-heptamethoxyflavone from Murraya exotica. Phytochemistry, 1970, 9: 889.

[74] Chowdhury B K, Chakraborty D P. Hibiscetin heptamethyl ether, a natural flavone. J. Indian Chem. Soc., 1971, 48: 80–82.

[75] Silva L B, Silva U L L, Mahendran M, et al. 4'-hydroxy-3,5,6,7,3',5'- hexamethoxyflavone from Murraya paniculata. Phytochemistry, 1980, 19: 2794.

[76] Joshi B S, Kamat V N. Structure of exoticin, a flavone from the leaves of Murraya exotica. Indian J. Chem., 1969, 7: 636.

[77] Yao H, Jin Y R, Shan J, et al. Two new natural methoxyflavonoids from leaves of Murraya paniculata (L.) Jack. Chem. Res. Chin. Univ., 2013, 29(5): 884–887.

[78] Zhang Y, Li J, Shi S P, et al. Glycosides of flavone methyl ethers from Murraya paniculata. Biochem. Syst. Ecol., 2012, 43: 10–13.

[79] Shi Q, Jiang Z, Yang J, et al. A flavonoid glycoside compound from Murraya paniculata (L.) interrupts metastatic characteristics of A549 Cells by regulating STAT3/NF-κB/COX-2 and EGFR signaling pathways. AAPS J., 2017, 19: 1779–1790.

[80] Chowdhury B K, Chakraborty D P. 3-formylindole from Murraya exotica. Phytochemistry, 1971, 10: 481–483.

[81] Kinoshita T, Tatara S, Ho F C, et al. 3-Prenylindoles from Murraya paniculata and their biogenetic significance. Phytochemistry, 1989, 28: 147–151.

[82] Kong Y C, Cheng K F, Cambie R C, et al. Yuehchukene: a novel lndole alkaloid with anti-implantation activity. J. Chem. Soc., Chem. Commun., 1985, 2: 47–48.

[83] Roy S, Bhattacharya L. Girinimbine and koenimbine from Murraya exotica Linn. J. Indian Chem. Soc., 1981, 58: 1212.

[84] Bhattacharyya P, Roy S, Biswas A, et al. Mahanimbine and murrayazoline from Murraya exotica Linn. (syn. Murraya paniculata). J. Indian Chem. Soc., 1978, 55: 308.

[85] Ahmad Z A. Murrayazolinol from Murraya exotica. Indian Drugs, 1994, 31(1): 32–33.

[86] Ganguly S N, Sarkar A. Exozoline, a new carbazole alkaloid from the leaves of Murraya exotica. Phtyochemistry, 1978, 17: 1816–1817.

[87] Desoky E K, Bishay D W. A new dimeric carbazole alkaloid from Murraya exotica L. (Rutaceae) cultivated in Egypt. Bull. Fac. Pharm., 1992, 30(3): 231–233.

[88] Khan M A, Nizami S S, Qamar T, et al. Tamynine-a new alkaloid from Murraya paniculata. Heterocycles, 1994, 38(9): 2005–2008.

[89] Fauvel M T, Gleye J, Moulis C, et al. Alkaloids from Murraya paniculata (L.) Jack. Plantes Medicinales et Phytotherapie, 1978, 12(3): 207–211.

[90] 姜平川,周军,曹斌,等.九里香挥发油成分研究.中药材,2009, 32(8): 1224.

[91] Lv H N, Guo X Y, Tu PF, et al. Comparative analysis of the essential oil composition of Murraya paniculata and M. exotica. Nat. Prod. Commun., 2013, 8(10): 1473–1475.

[92]刘京丽,王淑如,陈琼华. 九里香多糖和蛋白多糖的分离、纯化和分析. 生物化学杂志,1989, 5(1):33–38.

[93] 吴龙火,刘昭文,许瑞安. 九里香叶的抗炎镇痛作用研究. 湖北农业科学,2011, 50(21): 4435–4437.

[94] 吴龙火,刘昭文,曾靖,等.九里香叶中香豆素类化合物的抗炎镇痛活性. 光谱实验室,2011, 28(6): 2999–3003.

[95] Wu L H, Li P, Wang X, et al. Evaluation of anti-inflammatory and antinociceptive activities of Murraya exotica. Pharm. Biol., 2010, 48(12): 1344–1353.

[96] Wu J, Liu K, Shi X. The anti-inflammatory activity of several flavonoids isolated from Murraya paniculata on murine macrophage cell line and gastric epithelial cell (GES-1). Pharm. Biol., 2016, 54(5): 868–881.

[97] Cuong N M, Khanh P N, Duc H V, et al. Vasorelaxing activity of two coumarins from Murraya paniculata Leaves. Biol. Pharm. Bull., 2014, 37(4): 694–697.

[98] 张芸. 千里香化学成分及指纹图谱研究. 北京大学,2010.

[99] Kanakam V, Kalakota C P, Gajavelli B K. Evaluation of antihypertensive activity on aqueous leaves extract of Murraya exotica Linn. In renal artery occluded hypertensive rats. WJPR, 2015, 4(12): 1878–1884.

[100] 樊秋菊. 九里香叶总黄酮降血糖作用的研究. 吉林大学,2008.

[101] 邹敬韬. 九里香叶总黄酮对大鼠实验性2型糖尿病肾病的保护作用. 吉林大学,2010.

[102] 邹敬韬. 九里香叶总黄酮及其单体对糖尿病心肌病的保护作用. 吉林大学,2014.

[103] 刘一鸣. 九里香叶总黄酮及其单体镇静催眠作用的药效学研究. 吉林大学,2014.

[104] 张月. 九里香叶总黄酮镇静催眠作用机制及依赖性的初步研究. 吉林大学,2016.

[105] 谢晶曦,谢蓝,顾志平,等. 九里香抗生育活性物质-月橘烯碱的仿生合成研究. 药学学报,1988, 23(10): 732–738.

[106] 王迺功,关慕贞,雷海鹏. 月橘烯碱抗着床作用及其激素活性的研究. 药学学报,1990, 25(2): 85–89.

[107] 王淑如,吴梧桐,陈琼华. 九里香皮抗生育物质的分离、效价与毒性. 中国药科大学学报,1987, 18(3): 183–186.

[108] 张宗禹,韦松,陈安兰,等. 九里香糖蛋白成分终止孕兔妊娠及其机理. 中国药科大学学报,1989, 20(5): 283–286.

[109] 刘京丽,王淑如,陈琼华. 九里香蛋白多糖的抗生育及其它生物活性. 中国生物化学与分子生物学报,1989, 5(2): 119–123.

[110] Kong Y C, NG K H, But P P-H, et al. Sources of the anti-implantation alkaloid yuehchukene in the genus Murraya. J. Ethnopharmacol, 1986, 15(2): 195–200.

[111] 骆焱平,郑服丛,杨叶. 128种南药植物提取物对6种病原菌的生长抑制作用. 热带作物学报,2005, 25(4): 106–111.

[112] 骆焱平,卢远倩,夏治琴,等. 九里香层析物的抑菌活性及成分分析. 西北农业学报,2011, 20(9): 180–183.

[113] Huang Y S, Wang Y, Luo X P, et al. Composition, antimicrobial and antioxidant activities of the essential oil of Murraya exotica from Hainan of China. Asian J. Chem., 2013, 25(9): 5055–5058.

[114] Rehman F-u, Khan M F, Khan I, et al. Analgesic activity of carbazole alkaloid from Murraya paniculata Linn. (Rutaceae). Am-Euras. J. Agric & Environ. Sci., 2014, 14(3): 240–245.

[115] Jorge R E, Ramis-Ramos G, Vander H Y, et al. Chemical compositon,antioxidant properties and antimicrobial activity of the essential oil of Murraya paniculata leaves from the mountains of Central Cuba. Nat. Prod. Commun., 2012, 7(11): 1527–1530.

[116] Wang C F, Zhang W J, Guo S S, et al. Chemical composition of essential oils extracted from six Murraya species and their repellent activity against Tribolium castaneum. Ind. Crop. Prod., 2015, 76: 681–687.

[117] Li W Q , Jiang C H, Chu S S, et al. Chemical composition and toxicity against Sitophilus zeamais and Tribolium castaneum of the essential oil of Murraya exotica Aerial Parts. Molecules, 2010, 15(8): 5831–5839.

[118] 骆焱平. 九里香农用活性及仿生合成研究. 海南大学,2013.

[119] 连春枝,陈国德,钱军,等. 5%九里香黄酮可溶性粉剂对菜蚜的田间药效试验. 热带林业,2014, 42(2): 24–25.

[120] 姜平川,李嘉,黄建猷,等. HPLC测定广西不同产地千里香中九里香酮和5′-九里香酮的含量. 中国实验方剂学杂志,2010,16(16): 36–38.

[121] 王静,韩正洲,杨立伟,等. HPLC和UPLC法对比测定千里香药材中九里香酮的含量. 药物分析杂志,2010, 30(8): 107–109.

[122] Liu B Y, Zhang C, Lv H N, et al. Simultaneous determination of three main analytes of Murraya exotica by HPLC. J. Chin. Pharm. Sci., 2015, 24(2), 88–94.

[123] 姜平川,李嘉,杨海船,等. HPLC测定九里香中脱水长叶九里香内酯的含量. 中国现代应用药学,2011, 28(4): 67–70.

[124] 姜平川,李嘉,杨海船,等. HPLC法同时测定九里香中橙皮内酯和脱水长叶九里香内酯的含量. 中华中医药杂志,2012, 27(1): 169–171.

[125] 杨峻山, 苏亚伦. 九里香化学成分的研究. 药学学报,1983, 18(10): 760?765

[126] 杨峻山, 杜明慧. 海南九里香化学成分的研究. 化学学报,1984, 42(12): 1308?1311.

[127] Olawore N O, Ogunwander I A, Ekundayo O, et al. Chemical composition of the leaf and fruit essential oils of Murraya paniculata (L.) Jack. (Syn. Murraya exotica Linn.). Flavour Frag. J., 2005, 20(1): 54?56.

[128] Chakraborty D P, Roy S, Chakraborty A, et al. Structure and synthesis of mexolide, a new antibiotic dicoumarin from Murraya exotica Linn. [Syn. M. Paniculata (L.) Jack.]. Tetrahedron, 1980, 36(24): 3563?3564.

[129] Lv H N, Wang S, Zeng K W, et al. Anti-inflammatory coumarin and benzocoumarin derivatives from Murraya alata. J. Nat. Prod., 2015, 78, 279?285.

[130] Lo LC, Liao YC, Kuo CH, et al. A novel coumarin-type derivatizing reagent of alcohols:?Application in the CD exciton chirality method for microscale structural determination. Org. Lett., 2000, 2: 683–685.

[131] Tian D M, Wang F F, Duan M L, et al. Coumarin analogues from the Citrus grandis (L.) Osbeck and their hepatoprotective activity. J. Agric. Food. Chem., 2019, 67, 1937?1947.

[132] 李长伟, 崔承彬. 几种物理化学技术在天然产物立体结构解析中的应用. 国际药学研究杂志,2015, 42(06): 151?168.

[133] 刘静, 杜丹, 司伊康, 等. Mo2(OAc)4试剂在邻二醇类结构绝对构型确定中的应用. 有机化学,2010, 30(9): 1270?1278.

[134] Karplus M. Vicinal proton coupling in nuclear magnetic resonance. J Am Chem Soc. 1963, 85: 2870–2871.

[135] Rosselli S, Maggio A, Bellone G, et al. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa. Planta Med., 2006, 72: 116-120.

[136] 夏桂阳, 王萌, 陈丽霞, 等. Rh2(OCOCF3)4试剂在仲醇和叔醇类结构绝对构型确定中的应用. 国际药学研究杂志,2015, 42(6): 726–733.

[137] Lekphrom R, Kanokmedhakul S, Kukongviriyapan V, et al. C-7 oxygenated coumarins from the fruits of Micromelum minutum. Arch. Pharm. Res., 2011, 34, 527?531.

[138] Cokoja M, Bruckmeier C, Rieger B, et al. Cover picture: transformation of carbon dioxide with homogeneous transition-metal catalysts: a molecular solution to a global challenge? Angew. Chem. Int. Ed., 2011, 50: 8510?8537.

[139] Han Z B, Rong L C, Wu J, et al. Catalytic hydrogenation of cyclic carbonates: a practical approach from CO2 and epoxides to methanol and diols. Angew. Chem. Int. Ed., 2012, 51, 13041?13045.

[140] Kinoshita T, Wu J B, Ho F C. Prenylcoumarins from Murraya paniculata var. omphalocarpa (Rutaceae): the absolute configuration of sibiricin, mexoticin and omphamurin. Chem. Pharm. Bull., 1996, 44(6):1208–1211.

[141] Jang D S, Su B N, Pawlus A D, et al. Limnophilaspiroketone, a highly oxygenated phenolic derivative from Limnophila geoffrayi. J. Nat. Prod., 2005, 68, 1134?1136.

[142] Garcin E D, Arvai A S, Rosenfeld R J, et al. Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase. Nat. Chem. Biol., 2008, 4, 700?707.

[143] Zhang Y, Liu J Z, Wang M Y, et al. Five new compounds from Hosta plantaginea flowers and their anti-inflammatory activities. Bioorg. Chem., 2020, 95, 103494.

[144] Nguyen T K P, Nguyen K P P, Kamounah F S , et al. NMR of a series of novel hydroxyflavothiones. Magn.Reson.Chem., 2009, 47(12): 1043–1054.

[145] Reutrakul V, Krachangchaeng C, Tuchinda P, et al. Cytotoxic and anti-HIV-1 constituents from leaves and twigs of Gardenia tubifera. Tetrahedron, 2004, 60(7): 1517–1523.

[146] Zahir A, Jossang A, Bodo B. DNA topoisomerase I inhibitors: cytotoxic flavones from Lethedon tannaensis. J. Nat. Prod., 1996, 59(7): 701–703.

[147] Mateeva N N, Kode R N, Redda K K. Synthesis of novel flavonoid derivatives as potential HIV-integrase inhibitors. J. Heterocyclic Chem., 2002, 39(6): 1251–1258.

[148] Wang S Y, Sun Z L, Liu T, et al. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother. Res., 2014, 28: 1071–1076.

[149] Nirma C, Rangel G T, Alves M A, et al. New Leishmania donovani nucleoside hydrolase inhibitors from Brazilian flora. Rsc. Adv., 2019, 9(32): 18663–18669.

[150] Li Y Z, Zhang J L, Liu M D. Chemical constituents of Peperomia cavaleriei. Chem. Nat. Compd+., 2018, 54(1): 175–177.

[151] Khazneh E, H?ibová P, Ho?ek J, et al. The chemical composition of Achillea ilhelmsii C. Koch and its desirable effects on hyperglycemia, inflammatory mediators and hypercholesterolemia as risk factors for cardiometabolic disease. Molecules. 2016, 21(4): 404.

[152] Rwangabo P C. Umuhengerin, a new antimicrobially active flavonoid from Lantana trifolia. J. Nat. Prod., 1988, 51(5): 966–968.

[153] Oshitari T, Okuyama Y, Miyata Y, et al. B-Ring-modified and/or 5-demethylated nobiletin congeners: inhibitory activity against pro-MMP-9 production. Bioorg. Med. Chem., 2011, 19(23): 7085–7092.

[154] Rahmani S, Belboukhari N, Cheriti A. Phytochemical investigation of bioactive extract from endemic medicinal plant Limoniastrum feei (Girard) Batt (Plumbaginaceae). Asian J. Chem., 2014, 26(2):365–368.

[155] Sukari M A, Azziz S S S A, Rahmani M, et al. Polysubstitued flavonoids from the leaves of Murraya paniculata (Rutaceae). Nat. Prod. Sci., 2003, 9(2): 56–59.

[156] 赵爱华, 彭丽艳, 王宗玉, 等. 白叶香茶菜中的紫罗兰酮衍生物. 云南植物研究,2003, 25(4): 503–506.

[157] Mei S X, Yang H, Jiang B, et al. Constituents of Craspedolobium schochii. Fitoterapia, 2000, 71(6): 623–626.

[158] Machida K, Osawa, K. On the flavonoid constituents from the peels of Citrus hassaku Hort. Ex Tanaka. Chem. Pharm. Bull., 1989, 37(4): 1092?1094.

[159] Gothelf K V, Torssell K B G. Synthesis of flavones via application of the nitrile oxide and the stille reactions. Acta. Chem. Scand., 1994, 48: 61–67.

[160] Nyandoro S S, Munissi J J E, Kombo M, et al. Flavonoids from Erythrina schliebenii. J. Nat. Prod., 2017, 80(2): 377–383.

[161] Nour A M M, Khalid S A, Kaiser M, et al. The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. J. Ethnopharmacol., 2010, 129(1): 127–130.

[162] Chen C C, Chen Y P, Hsu H Y, ET AL. New flavones from Bauhinia championii Brnth. Chem. Pharm. Bull., 1984, 32(1): 166?169.

[163] Moreira M D, Pican?o M C, Barbosa L C A, et al. Compounds from Ageratum conyzoides: isolation, structural elucidation and insecticidal activity. Pest Manag Sci., 2007, 63(6): 615–621.

[164] Hamdan D, El-Readia M Z, Tahrani A, et al. Chemical composition and biological activity of Citrus jambhiri Lush. Food. Chem., 2011, 127: 394–403.

[165] Sajjadi S E, Ghanadian M, Aghaei M, et al. Two new dammarane triterpenes isolated from Cleome khorassanica Bunge & Bien with cytotoxicity against DU-145 and LNCaP prostate cancer cell lines. J. Asian. Nat. Prod. Res., 2020, 22(1): 38–46

[166] Xu Y, Lv X J, Yang G L, et al. Simultaneous separation of six pure polymethoxyflavones from sweet orange peel extract by high performance counter current chromatography. Food. Chem., 2019, 292: 160–165.

[167] Kawaii S, Tomono Y, Katase E, et al. HL-60 differentiating activity and flavonoid content of the readily extractable fraction prepared from Citrus Juices. J. Agric. Food. Chem., 1999, 47(1): 128-135.

[168] Yao H, Jin YR, Shan J, et al. Two New Natural Methoxyflavonoids from Leaves of Murraya paniculata (L.) Jack. Chem. Res. Chin. Univ., 2013, 29(5), 884–887.

[169] Duan L, Dou LL, Yu KY, et al. Polymethoxyflavones in peel of Citrus reticulata 'Chachi' and their biological activities. Food. Chem., 2017, 234: 254-261.

[170] Seidela V, Bailleulb F, Waterman PG. (Rel)-1β,2α-di-(2,4-dihydroxy-6-methoxybenzoyl)-3β, 4α-di-(4-methoxyphenyl)-cyclobutane and other avonoidsfrom the aerial parts of Goniothalamus gardneri and Goniothalamus thwaitesii. Phytochemistry, 2000, 55: 439–446.

[171] Anand P, Singh B. Synthesis and evaluation of novel carbamate-substituted flavanone derivatives as potent acetylcholinesterase inhibitors and anti-amnestic agents. Med. Chem. Res., 2013, 22(4): 1648–1659.

[172] Reddy N P, Reddy B A K, Gunasekar D, et al. Flavonoids from Limnophila indica. Phytochemistry, 2007, 68(5): 636–639.

[173] Passador E A P, M.Fátima das G F, Fo E R, et al. A pyrano chalcone and a flavanone from Neoraputia magnifica. Phytochemistry, 1997, 45(7): 1533–1537.

[174] Taniguchi T, Monde K. Exciton chirality method in vibrational circular dichroism. J. Am. Chem. Soc., 2012, 134: 3695?3698.

[175] Onda M, Li S S, Li X. Heterocycles XXIV. Synthesis of optically pure 2,3-trans-5,7,3',4',5'-pentahydroxyflavan-3,4-diols and comparison with naturally occurring leucodelphinidins. J. Nat. Prod., 1989, 52(5): 1100–1106.

[176] Azevedo ODCCDe, Seixas RSGR, Silva AMS. New developments in the synthesis of (E)-8-styrylflavones. Synlett, 2015, 26: 1379–1384.

[177] Sung S K, Van A V, Haeil P. Synthesis of ochnaflavone and its inhibitory activity on PGE2 production. Bull. Korean Chem. Soc., 2014, 35(11): 3219–3223.

[178] Vongdeth K, Han PP, Li W, et al. Synthesis and antiproliferative activity of natural and non-natural polymethoxychalcones and polymethoxyflavones. Chem. Nat. Compd+., 2019, 55(1): 11–17.

[179] Sherif E A, Gupta R K, Krishnamurti M. Synthesis of chalcones, flavanones isolated from Popowia cauliflora and their analogues. Agric. Bioi. Chern., 1981, 45(2): 531–533.

[180] 陈建新, 黄深惠, 王英, 等.半边莲化学成分研究. 中药材,2010, 33(11): 1721?1724.

[181] Cao S G, Wu X H, Sim K Y, et al. Minor coumarins from Calophyllum teysmannii var. inophylloide and synthesis of cytotoxic calanone derivatives. Helvetica. Chimica. Acta., 1998, 81: 1404?1416.

[182] Higa T, Scheuer P J. Hawaiian plant studies. part XVI. coumarins and flavones from Pelea barbigera (Gray) Hillebrand (Rutaceae). J. Chem. Soc. Perk. T. 1., 1974, 11: 1350?1352.

[183] Lin T T, Huang Y Y, Tang G H, et al. Prenylated coumarins: natural phosphodiesterase-4 inhibitors from Toddalia asiatica. J. Nat. Prod., 2014, 77(4): 955?962.

[184] Page P C B, Appleby L F, Day D, et al. Highly enantioselective total synthesis of (-)-(3'S)-lomatin and (+)-(3'S,4'R)-trans-khellactone. Org. Lett., 2009, 11(9): 1991?1993.

[185] Panthong K, Srisud Y, Rukachaisirikul V, et al. Benzene, coumarin and quinolinone derivatives from roots of Citrus hystrix. Phytochemistry, 2013, 88: 79?84.

[186] Ju-ichi M, Inoue M, Tsuda R, et al. Junosmarin, a new khellactone ester from Citrus junos Tanaka. Heterocycles, 1986, 24(10): 2777?2779.

[187] Hong M J, Kim J. Determination of the absolute configuration of khellactone esters from Peucedanum japonicum roots. J. Nat. Prod., 2017, 80: 1354?1360.

[188] You C X, Yang K, Wang C F, et al. Cytotoxic compounds isolated from Murraya tetramera Huang. Molecules, 2014, 19(9): 13225?13234.

[189] Cai J N, Basnet P, Wang Z T, et al. Coumarins from the Fruits of Cnidium monnieri. J. Nat. Prod., 2000, 63(4): 485?488.

[190] Lv X, Xin X L, Deng S, et al. Biotransformation of osthole by Mucor spinosus. Process. Biochem., 2012, 47(12): 2542?2546.

[191] Chaya N, Terauchi K, Yamagata Y, et al. Antiproliferative constituents in plants 14. coumarins and acridone alkaloids from boenninghausenia japonica NAKAI. Chem. Pharm. Bull., 2004, 27(8):1312–1316.

[192] Kinoshita T, Wu J B, Ho F C. The isolation of a prenylcoumarin of chemotaxonomic significance from Murraya paniculata Var. omphalocarpa. Phytochemistry, 1996, 43(1): 125?128.

[193] You C X, Guo S S, Zhang W J, et al. Chemical constituents of Murraya tetramera Huang and their repellent activity against Tribolium castaneum. Molecules, 2017, 22(8): 1379.

[194] You C X, Guo S S, Geng Z F, et al. Repellent activity of compounds from Murraya alata Drake against Tribolium castaneum. Ind. Crop. Prod., 2017, 95: 460?466.

[195] Minaeva V G, Volkhonskaya T A, Valutskaya A G. Comparative investigation of the flavonoid composition of some Siberian species of Bupleurum. Rast. Resursy., 1965, 1(2): 233?235.

[196] Ito C, Tanahashi S, Omura M, et al. New coumarins from Citrus plant. Chem. Pharm. Bull., 1989, 37(8): 2217?2218.

[197] Dissanayake A A, Ameen B A H, Nair M G. Lipid peroxidation and cyclooxygenase enzyme inhibitory compounds from Prangos haussknechtii. J. Nat. Prod., 2017, 80: 2472?2477.

[198] Chia Y C, Chang F R, Wang J C, et al. Antiplatelet aggregation coumarins from the leaves of Murraya omphalocarpa. Molecules, 2008, 13: 122?128.

[199] He Y J, Zhu S H, Wu C Q, et al. Bioactivity-guided separation of potential D2 dopamine receptor antagonists from Aurantii Fructus based on molecular docking combined with high-speed counter-current chromatography. Molecules, 2018, 23: 3135.

[200] Teshima N, Tsugawa M, Tateishi A, et al. Two new biocoumarins from the Leaves of Murraya exotica. Heterocycles, 2004, 63(12): 2837?2843.

[201] Kim Y A, Lee J I, Kong C S, et al. Antioxidant activity of dihydrofurocoumarins from Corydalis heterocarpa. Biotechnol. Bioproc. E., 2014, 19(5): 771?779.

[202] Toda J, Niimura Y, Takeda K, et al. General method for synthesisi of erythrinan and homoerythrinan alkaloids (1): synthesis of a cycloerythrinan, as a key intermediate to Erythrina alkaloids by Pummerer-Type reaction. Chem. Pharm. Bull., 1998, 46(6): 906–912.

[203] Pettit G R, Melody N, Thornhill A, et al. Antineoplastic agents.579. synthesis and cancer cell growth evaluation of E-Stilstatin 3: A resveratrol structural modification. J. Nat. Prod., 2009, 72(9): 1637–1642.

[204] Zhou Y, Wu J, Zou K. Xylogranatinin, a new pyrido[1,2-α]pyrazine alkaloid from the fruit of a chinese mangrove Xylocarpus granatum. Chem. Nat. Compd+., 2007, 43(4):426–428.

[205] Li H L, Song H C, Zhang Y, et al. Chemical constituents of the barks of Podocarpus macrophyllus. Chem. Nat. Compd+., 2016, 52(3): 539–541.

[206] Dellagreca M, Fiorentino A, Izzo A, et al. Phytotoxicity of secondary metabolites from Aptenia cordifolia. Chem. Biodivers., 2007, 4(2): 118–128.

[207] Ramírez-Cisneros M A, Rios M Y, Ríos-Gómez R, et al. Cycloartanes from Krameria pauciflora and their In Vitro PLA2, COX-1, and COX-2 enzyme inhibitory activities. Planta Medica, 2012, 78(18): 1942–1948.

[208] Chaves O S, Teles Y C F, Monteiro M M de O, et al. Alkaloids and phenolic compounds from Sida rhombifolia L. (Malvaceae) and vasorelaxant activity of two indoquinoline alkaloids. Molecules, 2017, 22(1): 94.

[209] Sampaio O M, Vieira L C C, Bellete B S, et al. Evaluation of alkaloids isolated from Ruta graveolens as photosynthesis inhibitors. Molecules, 2018, 23(10): 2693.

[210] 李硕果, 杨茵, 叶文才, 等. 三桠苦的化学成分研究. 中草药,2010, 41(07): 29–33.

[211] 吴龙火, 温慧玲, 金奇, 等. 九里香指纹图谱与其抗炎活性的灰关联度分析. 中国实验方剂学杂志,2013, 19(4): 338–342.

[212] 刘冰语. 九里香香豆素类化学成分、生物活性及质量标准研究. 北京大学,2016.

[213] 李震宇, 范玛莉, 秦雪梅. 基于NMR代谢组学技术的白芍及其醋制品的化学比较. 药学学报,2015, 50(2): 211–217.

[214] 田栋, 李震宇, 范圣此, 等. 基于NMR代谢组学技术的不同产地黄芪水溶性浸出物化学组成分析. 药学学报,2014, 49(1): 89–94.

[215] Chen J F, Song Y L, Guo X Y, et al. Characterization of the herb-derived components in rats following oral administration of Carthamus tinctorius extract by extracting diagnostic fragment ions (DFIs) in the MSn chromatograms. Analyst, 2014, 139.

[216] Ma X L, Guo X Y, Song Y L, et al. An Iintegrated strategy for global qualitative and quantitative profiling of traditional chinese medicine formulas: Baoyuan decoction as a case. Scientific Reports, 2016, 6(1): 38379.

[217] Song Y L, Yang X J, Jiang Y, et al. Characterization of the metabolism of sibiricaxanthone F and its aglycone in vitro by high performance liquid chromatography coupled with Q-trap mass spectrometry. J. Pharmaceut. Biomed., 2012, 70: 700–707.

[218] Song W, Qiao X, Chen K, et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids. Anal. Chem., 2017, 89(5): 3146–3153.

[219] Song Y L, Song Q Q, Zhang Z, et al. An integrated strategy to quantitatively differentiate chemome between Cistanche deserticola and C. tubulosa using high performance liquid chromatography–hybrid triple quadrupole-linear ion trap mass spectrometry. J Chromatogr. A, 2016, 1429: 238–247

[220] Xu W, Chen D, Wang N, et al. Development of high-performance chemical isotope labeling LC–MS for profiling the human fecal metabolome. Anal. Chem., 2015, 87(2): 829–836.

[221] Chen W, Gong L, Guo Z, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol. Plant., 2013, 6(6):1769–1780.

[222] 丛浦珠. 天然有机质谱学[M]. 中国医药科技出版社,2003.

[223] Song Y L, Song Q Q, Liu Y, et al. Integrated work-flow for quantitative metabolome profiling of plants, Peucedani Radix as a case. Anal. Chim. Acta, 2017, 953: 40–47.

[224] Li Z F, Zhao C X, Zhao X J, et al. Deep annotation of hydroxycinnamic acid amides in plants based on ultra-high-performance liquid chromatography?high resolution mass spectrometry and its in silico database. Anal. Chem., 2018, 90: 14321?14330.

[225] Wu L, Gong P, Wu Y Z, et al. An integral strategy toward the rapid identification of analogous nontarget compounds from complex mixtures. J. Chromatogr. A., 2013, 1303: 39–47.

[226] Zhang Q Q, Huo M Q, Zhang Y L, et al. A strategy to improve the identification reliability of the chemical constituents by high-resolution mass spectrometry-based isomer structure prediction combined with a quantitative structure retention relationship analysis: phthalide compounds in Chuanxiong as a test case. J. Chromatogr. A., 2018, 1552: 17–28.

[227] Song Q Q, Li J, Huo H X, et al. Retention time and optimal collision energy advance structural annotation relied on LC?MS/MS: an application in metabolite identification of an antidementia agent namely Echinacoside. Anal. Chem., 2019, 91: 15040–15048.

[228] Chen P, Sun J, Ford P. Differentiation of the four major species of Cinnamons (C. burmannii, C. verum, C. cassia, and C. loureiroi) using a flow injection mass spectrometric (FIMS) fingerprinting method. J. Agric. Food Chem., 2014, 62: 2516–2521.

[229] Xu X, Li W, Li T, et al. Direct infusion-three-dmensional-mass spectrometry enables papid chemome comparison among herbal medicines. Anal. Chem., 2020, 92: 7646–7656.

[230] 马晓丽. 小叶九里香中咔唑生物碱类成分及其生物活性研究. 北京大学,2018.

分类号:

 R285.1    

馆藏位置:

 医临时馆    

开放日期:

 2024-04-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式