- 无标题文档
查看论文信息

论文题名(中文):

 基质辅助激光解析电离飞行时间质谱在鉴定少见致病丝状真菌中的应用    

作者:

 魏林苇    

学号:

 B1310301523    

论文语种:

 chi    

学科名称:

 医学 - 临床医学 - 皮肤病与性病学    

学生类型:

 博士    

学校:

 北京大学医学部    

院系:

 第一临床医学院    

专业:

 皮肤病与性病学    

第一导师姓名:

 余进    

论文完成日期:

 2021-05-01    

论文答辩日期:

 2021-05-21    

论文题名(外文):

 Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Rare?Pathogenic Filamentous Fungi    

关键词(中文):

 MALDI-TOF MS ; 赛多孢霉 ; 枝顶孢霉 ; 帚霉 ; 小囊菌属    

关键词(外文):

 MALDI-TOF MS ; Scedosporium ; Acremonium ; Scopulariopsis ; Microascus    

论文文摘(中文):

【目的】基质辅助激光解析电离飞行时间质谱(matrix-assisted laser  desorption/ionization time-of-flight mass spectrometry, MALDI-TOF MS)是近年来新兴的微生物检测技术。该技术在鉴定少见及罕见丝状真菌方面的研究仍较为缺乏。本研究的目的是评价MALDI-TOF MS在鉴定赛多孢霉属、枝顶孢霉样、帚霉属和小囊菌属真菌中的应用效果。

【方法】1. 试验菌株为北京大学真菌和真菌病研究中心保藏的赛多孢霉属真菌28株、枝顶孢霉样真菌26株及帚霉属和小囊菌属真菌27株。所有菌株均采用液体培养基培养,甲酸乙腈法提取蛋白。分别选取8株(4种)赛多孢霉属真菌、10株(7种)枝顶孢霉样真菌及11株(10种)帚霉属和小囊菌属真菌作为参考菌株,用MALDI Biotyper OC 4.0软件构建BMU数据库。

2. 使用布鲁克丝状真菌库v1.0分别鉴定20株赛多孢霉属真菌、16株枝顶孢霉样真菌及16株帚霉属和小囊菌属真菌的测试菌株,与DNA测序结果进行比较;联合布鲁克丝状真菌库v1.0与BMU数据库再次鉴定上述菌株。

3. 使用MALDI Biotyper OC 4.0软件分别构建28株赛多孢霉属真菌、26株枝顶孢霉样真菌及27株帚霉属和小囊菌属真菌的质谱图(mass spectrum profile, MSP)聚类分型树状图,与使用MEGA7软件构建的多位点联合系统进化树进行比较。

【结果】1. 使用MALDI-TOF MS及布鲁克丝状真菌库v1.0,20株赛多孢霉属真菌中95.0%(19/20)正确鉴定到属水平,但所有菌株均不能准确鉴定到种;16株枝顶孢霉样真菌全部无法鉴定;16株帚霉属和小囊菌属真菌中,62.5%(10/16)和68.8%(11/16)分别正确鉴定到种和属水平,正确鉴定的菌株均为S. brevicaulis。

2. 补充BMU数据库后,所有赛多孢霉属菌株均正确鉴定到复合体(species complex)水平,75.0%(15/20)正确鉴定到种水平;所有枝顶孢霉样菌株、帚霉属和小囊菌属菌株均正确鉴定到种水平。

3. 赛多孢霉属真菌的MSP聚类分型树状图不能区分尖端赛多孢霉复合体内的菌种。枝顶孢霉样真菌的MSP聚类分型树状图能够区分7个不同的菌种,与多基因系统进化树高度一致。帚霉属和小囊菌属真菌的MSP聚类分型树状图显示,各菌株聚于各自菌种或相近菌种的分支中,但小囊菌属中不同分支的位置与多基因系统进化树中的位置有所不同。

【结论】1. 仅使用布鲁克丝状真菌库v1.0,MALDI-TOF MS对赛多孢霉属真菌鉴定性能较好,对枝顶孢霉样、帚霉属和小囊菌属真菌的鉴定性能较差。

2. 完善数据库后,MALDI-TOF MS可以将赛多孢霉属真菌鉴定到复合体水平,但区分复合体内菌种的能力有限;MALDI-TOF MS可以将枝顶孢霉样真菌、帚霉属和小囊菌属真菌准确鉴定到种水平。

3. MSP聚类分型树状图能够可靠地揭示枝顶孢霉样真菌种间分群,并可以作为区分帚霉属和小囊菌属不同菌种的辅助手段,但不能区分尖端赛多孢霉复合体内的菌种。

文摘(外文):

【Objective】 Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has emerged as a powerful microorganism identification tool. Research on MALDI-TOF MS identification of rare filamentous fungi is still lacking. This study aimed to evaluate the performance of MALDI-TOF MS on the identification of Scedosporium, Acremonium-like, Scopulariopsis and Microascus species.

【Methods】 1. A total of 28 Scedosporium isolates, 26 Acremonium-like isolates, 27 Scopulariopsis and Microascus isolates preserved at the Research Center for Medical Mycology of Peking University were included in this study. Liquid mold cultures and formic acid/acetonitrile protein extraction method were utilized for MALDI-TOF MS identification. An in-house BMU library containing isolates of Scedosporium spp. (7 isolates of 4 species), Acremonium-like spp. (10 isolates of 7 species), Scopulariopsis spp. and Microascus spp. (11 isolates of 10 species) was developed by MALDI Biotyper OC 4.0 software.

2. A total of 20 Scedosporium isolates, 16 Acremonium-like isolates, 16 Scopulariopsis and Microascus isolates were identified by MALDI-TOF MS with the Bruker Filamentous Fungi Library v1.0 (FFL v1.0) alone, and the FFL v1.0 plus the BMU library, respectively. The performance was evaluated by comparing the results with DNA sequencing.

3. The mass spectrum profile (MSP) dendrograms of the 28 Scedosporium isolates, 26 Acremonium-like isolates and 27 Scopulariopsis and Microascus isolates were constructed by MALDI Biotyper OC 4.0 software, respectively, and compared with the phylogenetic trees constructed by MEGA7 software based on multi-locus sequencing.

【Results】 1. Using the FFL v1.0 alone, 95.0% (19/20) and 0% (0/20) of the Scedosporium isolates were correctly identified to the genus and species levels, respectively; none of the Acremonium-like isolates had reliable identification; 68.8% (11/16) and 62.5% (10/16) of the Scopulariopsis and Microascus isolates were correctly identified to the genus and species levels, respectively, with S. brevicaulis being the only species correctly identified.

2. Using a combination of the FFL v1.0 and the BMU library, 100% (20/20) and 75.0% (15/20) of the Scedosporium isolates were correctly identified to the species complex and species levels, respectively; all of the Acremonium-like, Scopulariopsis and Microascus isolates were correctly identified to the species level.

3. The MSP dendrogram of the Scedosporium isolates cannot differentiate species in the Scedosporium apiospermum complex. The MSP dendrogram of the Acremonium-like isolates sepatated different species clearly, with a similar topology to that of the multi-locus phylogenetic tree. The MSP dendrogram of the Scopulariopsis and Microascus isolates clustered isolates of the same species or closely related species into a single clade. However, the topology of the MSP dendrogram and the multi-locus phylogenetic tree of the Microascus isolates was different.

【Conclusions】 1. MALDI-TOF MS showed unsatisfied performance on identifying Scedosporium, Acremonium-like, Scopulariopsis and Microascus isolates when using FFL v1.0 alone.

2. With a supplementary BMU library, MALDI-TOF MS was effective to identify Scedosporium isolates to the species complex level, while limited in the species-level identification; MALDI-TOF MS was reliable to identify Acremonium-like, Scopulariopsis and Microascus isolates to the species level.

3. The MSP dendrograms could be used as a method to discriminate different Acremonium-like species, and as an auxiliary method to discriminate species within genera Scopulariopsis and Microascus, but was unable to differentate species in the S. apiospermum complex.

论文目录:
第一章 文献综述 1
摘要 1
介绍 1
1. MALDI-TOF MS鉴定丝状真菌的样品前处理方法 2
1.1 培养方式 2
1.2 样本制备方式 3
2. MALDI-TOF MS鉴定丝状真菌的商业系统 4
3. MALDI-TOF MS鉴定丝状真菌的自建数据库 5
4. MALDI-TOF MS鉴定丝状真菌的Cutoff值 6
5. MALDI-TOF MS鉴定丝状真菌的其他影响因素 7
6. MALDI-TOF MS鉴定丝状真菌的其他进展 8
6.1 代谢产物低分子量质谱检测 8
6.2 阳性血培养直接检测 8
总结 8
第二章 基质辅助激光解析电离飞行时间质谱鉴定赛多孢霉属真菌 9
2.1 引言 9
2.2 实验材料和方法 10
2.2.1 试验菌株 10
2.2.2 主要试验仪器 10
2.2.3 主要实验试剂 11
2.2.4 主要实验耗材 12
2.2.5 主要试剂的配制及储存 12
2.2.6 实验方法 13
2.2.7 统计学处理 18
2.3 结果 19
2.3.1 赛多孢霉属菌株BT2序列测序结果及镜下结构 19
2.3.2 赛多孢属菌株MALDI-TOF MS 蛋白指纹图谱 20
2.3.3 赛多孢霉菌株MALDI-TOF MS 鉴定结果 21
2.3.4 赛多孢霉属真菌MSP聚类分型树状图 22
2.4 讨论 22
第三章 基质辅助激光解析电离飞行时间质谱鉴定枝顶孢霉样真菌 25
3.1 引言 25
3.2 实验材料和方法 26
3.2.1 试验菌株 26
3.2.2 主要实验仪器 26
3.2.3 主要实验试剂 26
3.2.4 主要实验耗材 26
3.2.5 主要试剂的配制及储存 26
3.2.6 实验方法 27
3.2.7 统计学处理 28
3.3 结果 28
3.3.1 枝顶孢霉样真菌镜下结构 28
3.3.2 枝顶孢霉样真菌MALDI-TOF MS蛋白指纹图谱 31
3.3.3 枝顶孢霉样真菌MALDI-TOF MS鉴定结果 31
3.3.4 枝顶孢霉样真菌MSP聚类分型树状图 32
3.4 讨论 33
第四章 基质辅助激光解析电离飞行时间质谱鉴定帚霉属和小囊菌属真菌 35
4.1 引言 35
4.2 实验材料和方法 36
4.2.1 试验菌株 36
4.2.2 主要实验仪器 36
4.2.3 主要实验试剂 36
4.2.4 主要实验耗材 36
4.2.5 主要试剂的配制及储存 36
4.2.6 实验方法 37
4.2.7 统计学处理 38
4.3 结果 38
4.3.1 帚霉属和小囊菌属真菌镜下结构 38
4.3.1 帚霉属和小囊菌属真菌MALDI-TOF MS蛋白指纹图谱 42
4.3.2 帚霉属和小囊菌属真菌MALDI-TOF MS鉴定结果 42
4.3.3 帚霉属和小囊菌属真菌MSP聚类分型树状图 43
4.4 讨论 44
第五章 结论及展望 47
5.1 结论 47
5.2 展望 47
参考文献 48
附录A 所有试验菌株的分离部位及DNA测序结果 56
附录B 所有测试菌株的MALDI-TOF MS鉴定结果 61
致谢 64
北京大学学位论文原创性声明和使用授权说明 65
个人简历 66
学位论文答辩委员会名单 68
参考文献:

[1] Brown G D, Denning D W, Gow N A, et al. Hidden killers: human fungal infections[J]. Sci Transl Med, 2012, 4(165): 165rv13.

[2] Miceli M H, Lee S A. Emerging moulds: epidemiological trends and antifungal resistance[J]. Mycoses, 2011, 54(6): e666-78.

[3] Lackner M, De Hoog G S, Verweij P E, et al. Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species[J]. Antimicrob Agents Chemother, 2012, 56(5): 2635-42.

[4] Imbert S, Normand A C, Cassaing S, et al. Multicentric Analysis of the Species Distribution and Antifungal Susceptibility of Cryptic Isolates from Aspergillus Section Fumigati[J]. Antimicrob Agents Chemother, 2020, 64(12): e01374-20.

[5] Gautier M, Ranque S, Normand A C, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: revolutionizing clinical laboratory diagnosis of mould infections[J]. Clin Microbiol Infect, 2014, 20(12): 1366-71.

[6] Ranque S, Normand A C, Cassagne C, et al. MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory[J]. Mycoses, 2014, 57(3): 135-40.

[7] Patel R. A Moldy Application of MALDI: MALDI-ToF Mass Spectrometry for Fungal Identification[J]. J Fungi (Basel), 2019, 5(1): 4.

[8] Paul S, Singh P, Sharma S, et al. MALDI-TOF MS-Based Identification of Melanized Fungi is Faster and Reliable After the Expansion of In-House Database[J]. Proteomics Clin Appl, 2019, 13(3): e1800070.

[9] Del Chierico F, Masotti A, Onori M, et al. MALDI-TOF MS proteomic phenotyping of filamentous and other fungi from clinical origin[J]. J Proteomics, 2012, 75(11): 3314-30.

[10] Wilkendorf L S, Bowles E, Buil J B, et al. Update on Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Identification of Filamentous Fungi[J]. J Clin Microbiol, 2020, 58(12): e01263-20.

[11] Dupont D, Normand A C, Persat F, et al. Comparison of matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) systems for the identification of moulds in the routine microbiology laboratory[J]. Clin Microbiol Infect, 2019, 25(7): 892-897.

[12] Zvezdanova M E, Escribano P, Ruiz A, et al. Increased species-assignment of filamentous fungi using MALDI-TOF MS coupled with a simplified sample processing and an in-house library[J]. Med Mycol, 2019, 57(1): 63-70.

[13] Reeve M A, Stewart H, Ryan M J. MALDI-TOF MS Spectral Variation Is Observed between Fungal Samples Grown under Identical Conditions after Long-term Storage by Cryopreservation, Freeze-drying, and under Oil[J]. Cryo Letters, 2019, 40(3): 145-151.

[14] Robert M G, Romero C, Dard C, et al. Evaluation of ID Fungi Plates Medium for Identification of Molds by MALDI Biotyper[J]. J Clin Microbiol, 2020, 58(5): e01687-19.

[15] Li Ying, Wang He, Hou Xin, et al. Identification by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Antifungal Susceptibility Testing of Non-Aspergillus Molds[J]. Front Microbiol, 2020, 11: 922.

[16] Panda A, Ghosh A K, Mirdha B R, et al. MALDI-TOF mass spectrometry for rapid identification of clinical fungal isolates based on ribosomal protein biomarkers[J]. J Microbiol Methods, 2015, 109: 93-105.

[17] Singh A, Singh P K, Kumar A, et al. Molecular and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry-Based Characterization of Clinically Significant Melanized Fungi in India[J]. J Clin Microbiol, 2017, 55(4): 1090-1103.

[18] Vidal-Acuna M R, Ruiz-Perez De Pipaon M, Torres-Sanchez M J, et al. Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)[J]. Med Mycol, 2018, 56(7): 838-846.

[19] Sun Yue, Guo Jian, Chen Rong, et al. Multicenter evaluation of three different MALDI-TOF MS systems for identification of clinically relevant filamentous fungi[J]. Med Mycol, 2021, 59(1): 81-86.

[20] Riat A, Hinrikson H, Barras V, et al. Confident identification of filamentous fungi by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry without subculture-based sample preparation[J]. Int J Infect Dis, 2015, 35: 43-5.

[21] Coulibaly O, Marinach-Patrice C, Cassagne C, et al. Pseudallescheria/Scedosporium complex species identification by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry[J]. Med Mycol, 2011, 49(6): 621-6.

[22] Heireman L, Patteet S, Steyaert S. Performance of the new ID-fungi plate using two types of reference libraries (Bruker and MSI) to identify fungi with the Bruker MALDI Biotyper[J]. Med Mycol, 2020, 58(7): 946-957.

[23] Sacheli R, Henri A S, Seidel L, et al. Evaluation of the new Id-Fungi plates from Conidia for MALDI-TOF MS identification of filamentous fungi and comparison with conventional methods as identification tool for dermatophytes from nails, hair and skin samples[J]. Mycoses, 2020, 63(10): 1115-1127.

[24] Cardot Martin E, Renaux C, Catherinot E, et al. Rapid identification of fungi from respiratory samples by Bruker Biotyper matrix-assisted laser desorption/ionisation time-of-flight using ID-FUNGI plates[J]. Eur J Clin Microbiol Infect Dis, 2021, 40(2): 391-395.

[25] Sitterle E, Giraud S, Leto J, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and accurate identification of Pseudallescheria/Scedosporium species[J]. Clin Microbiol Infect, 2014, 20(9): 929-35.

[26] Marinach-Patrice C, Lethuillier A, Marly A, et al. Use of mass spectrometry to identify clinical Fusarium isolates[J]. Clin Microbiol Infect, 2009, 15(7): 634-42.

[27] Xu Xiaoyan, Xiao Nong, Yang Minghua, et al. Discrimination of the microbial subspecies using the ribosomal protein spectra coupled with the metabolite high resolution mass spectra[J]. Talanta, 2020, 208: 120361.

[28] Lau A F, Drake S K, Calhoun L B, et al. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2013, 51(3): 828-34.

[29] Sleiman S, Halliday C L, Chapman B, et al. Performance of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian Clinical Setting[J]. J Clin Microbiol, 2016, 54(8): 2182-6.

[30] Cassagne C, Ranque S, Normand A C, et al. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. PLoS One, 2011, 6(12): e28425.

[31] Luethy P M, Zelazny A M. Rapid one-step extraction method for the identification of molds using MALDI-TOF MS[J]. Diagn Microbiol Infect Dis, 2018, 91(2): 130-135.

[32] Huang Yanfei, Zhang Mingxin, Zhu Min, et al. Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for the identification of clinical filamentous fungi[J]. World J Microbiol Biotechnol, 2017, 33(7): 142.

[33] Stein M, Tran V, Nichol K A, et al. Evaluation of three MALDI-TOF mass spectrometry libraries for the identification of filamentous fungi in three clinical microbiology laboratories in Manitoba, Canada[J]. Mycoses, 2018, 61(10): 743-753.

[34] Rychert J, Slechta E S, Barker A P, et al. Multicenter Evaluation of the Vitek MS v3.0 System for the Identification of Filamentous Fungi[J]. J Clin Microbiol, 2018, 56(2): e01353-17.

[35] Mcmullen A R, Wallace M A, Pincus D H, et al. Evaluation of the Vitek MS Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry System for Identification of Clinically Relevant Filamentous Fungi[J]. J Clin Microbiol, 2016, 54(8): 2068-73.

[36] Pinheiro D, Monteiro C, Faria M A, et al. Vitek((R)) MS v3.0 System in the Identification of Filamentous Fungi[J]. Mycopathologia, 2019, 184(5): 645-651.

[37] Bille E, Dauphin B, Leto J, et al. MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures[J]. Clin Microbiol Infect, 2012, 18(11): 1117-25.

[38] Normand A C, Cassagne C, Gautier M, et al. Decision criteria for MALDI-TOF MS-based identification of filamentous fungi using commercial and in-house reference databases[J]. BMC Microbiol, 2017, 17(1): 25.

[39] De Carolis E, Posteraro B, Lass-Florl C, et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. Clin Microbiol Infect, 2012, 18(5): 475-84.

[40] Becker P T, De Bel A, Martiny D, et al. Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library[J]. Med Mycol, 2014, 52(8): 826-34.

[41] Triest D, Stubbe D, De Cremer K, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of molds of the Fusarium genus[J]. J Clin Microbiol, 2015, 53(2): 465-76.

[42] Shao Jin, Wan Zhe, Li Ruoyu, et al. Species Identification and Delineation of Pathogenic Mucorales by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry[J]. J Clin Microbiol, 2018, 56(4): e01886-17.

[43] Shao Jin, Wan Zhe, Li Ruoyu, et al. Species identification of dermatophytes isolated in China by matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry[J]. Mycoses, 2020, 63(12): 1352-1361.

[44] Barker A P, Horan J L, Slechta E S, et al. Complexities associated with the molecular and proteomic identification of Paecilomyces species in the clinical mycology laboratory[J]. Med Mycol, 2014, 52(5): 537-45.

[45] Lau S K, Lam C S, Ngan A H, et al. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry for rapid identification of mold and yeast cultures of Penicillium marneffei[J]. BMC Microbiol, 2016, 16: 36.

[46] Normand A C, Cassagne C, Ranque S, et al. Assessment of various parameters to improve MALDI-TOF MS reference spectra libraries constructed for the routine identification of filamentous fungi[J]. BMC Microbiol, 2013, 13: 76.

[47] Schulthess B, Ledermann R, Mouttet F, et al. Use of the Bruker MALDI Biotyper for identification of molds in the clinical mycology laboratory[J]. J Clin Microbiol, 2014, 52(8): 2797-803.

[48] Park J H, Shin J H, Choi M J, et al. Evaluation of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry for identification of 345 clinical isolates of Aspergillus species from 11 Korean hospitals: comparison with molecular identification[J]. Diagn Microbiol Infect Dis, 2017, 87(1): 28-31.

[49] Theel E S, Hall L, Mandrekar J, et al. Dermatophyte identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2011, 49(12): 4067-71.

[50] Li Ying, Wang He, Zhao Yupei, et al. Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media[J]. Front Microbiol, 2017, 8: 1209.

[51] Buskirk A D, Hettick J M, Chipinda I, et al. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi[J]. Anal Biochem, 2011, 411(1): 122-8.

[52] Lau A F, Walchak R C, Miller H B, et al. Multicenter Study Demonstrates Standardization Requirements for Mold Identification by MALDI-TOF MS[J]. Front Microbiol, 2019, 10: 2098.

[53] Patel R. MALDI-TOF MS for the diagnosis of infectious diseases[J]. Clin Chem, 2015, 61(1): 100-11.

[54] Tadros M, Petrich A. Evaluation of MALDI-TOF mass spectrometry and Sepsityper Kit for the direct identification of organisms from sterile body fluids in a Canadian pediatric hospital[J]. Can J Infect Dis Med Microbiol, 2013, 24(4): 191-4.

[55] Spanu T, Posteraro B, Fiori B, et al. Direct maldi-tof mass spectrometry assay of blood culture broths for rapid identification of Candida species causing bloodstream infections: an observational study in two large microbiology laboratories[J]. J Clin Microbiol, 2012, 50(1): 176-9.

[56] Rodriguez-Sanchez B, Sanchez-Carrillo C, Ruiz A, et al. Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry[J]. Clin Microbiol Infect, 2014, 20(7): O421-7.

[57] De Almeida J N J, Sztajnbok J, Da Silva A R J, et al. Rapid identification of moulds and arthroconidial yeasts from positive blood cultures by MALDI-TOF mass spectrometry[J]. Med Mycol, 2016, 54(8): 885-9.

[58] Kaltseis J, Rainer J, De Hoog G S. Ecology of Pseudallescheria and Scedosporium species in human-dominated and natural environments and their distribution in clinical samples[J]. Med Mycol, 2009, 47(4): 398-405.

[59] Rougeron A, Schuliar G, Leto J, et al. Human-impacted areas of France are environmental reservoirs of the Pseudallescheria boydii/Scedosporium apiospermum species complex[J]. Environ Microbiol, 2015, 17(4): 1039-48.

[60] Hawksworth D L, Crous P W, Redhead S A, et al. The amsterdam declaration on fungal nomenclature[J]. IMA Fungus, 2011, 2(1): 105-12.

[61] Lackner M, De Hoog G S, Yang L Y, et al. Proposed nomenclature for Pseudallescheria, Scedosporium and related genera[J]. Fungal Diversity, 2014, 67(1): 1-10.

[62] Gilgado F, Cano J, Gene J, et al. Molecular and phenotypic data supporting distinct species statuses for Scedosporium apiospermum and Pseudallescheria boydii and the proposed new species Scedosporium dehoogii[J]. J Clin Microbiol, 2008, 46(2): 766-71.

[63] Ramirez-Garcia A, Pellon A, Rementeria A, et al. Scedosporium and Lomentospora: an updated overview of underrated opportunists[J]. Med Mycol, 2018, 56(suppl_1): 102-125.

[64] Toth E J, Nagy G R, Homa M, et al. Recurrent Scedosporium apiospermum mycetoma successfully treated by surgical excision and terbinafine treatment: a case report and review of the literature[J]. Ann Clin Microbiol Antimicrob, 2017, 16(1): 31.

[65] Seidel D, Meissner A, Lackner M, et al. Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope((R))[J]. Crit Rev Microbiol, 2019, 45(1): 1-21.

[66] 杨之辉, 余进, 李若瑜. 中国大陆地区赛多孢霉感染流行现状的回顾性分析[J]. 中国真菌学杂志, 2019, 14(03): 183-188+192.

[67] Horre R, Lackner M, Buzina W, et al. [Near-drowning and cerebral infections caused by fungi belonging to the Pseudallescheria / Scedosporium-complex][J]. Anasthesiol Intensivmed Notfallmed Schmerzther, 2010, 45(3): 152-8.

[68] Noni M, Katelari A, Kapi A, et al. Scedosporium apiospermum complex in cystic fibrosis; should we treat?[J]. Mycoses, 2017, 60(9): 594-599.

[69] Sedlacek L, Graf B, Schwarz C, et al. Prevalence of Scedosporium species and Lomentospora prolificans in patients with cystic fibrosis in a multicenter trial by use of a selective medium[J]. J Cyst Fibros, 2015, 14(2): 237-41.

[70] Wang Hong, Wan Zhe, Li Ruoyu, et al. Molecular identification and susceptibility of clinically relevant Scedosporium spp. in China[J]. Biomed Res Int, 2015, 2015: 109656.

[71] Bernhard M, Zautner A E, Steinmann J, et al. Towards proteomic species barcoding of fungi - An example using Scedosporium/Pseudallescheria complex isolates[J]. Fungal Biol, 2016, 120(2): 162-5.

[72] Glass N L, Donaldson G C. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes[J]. Appl Environ Microbiol, 1995, 61(4): 1323-30.

[73] Perdomo H, Sutton D A, Garcia D, et al. Spectrum of clinically relevant Acremonium species in the United States[J]. J Clin Microbiol, 2011, 49(1): 243-56.

[74] Summerbell R C, Gueidan C, Guarro J, et al. The Protean Acremonium. A. sclerotigenum/egyptiacum: Revision, Food Contaminant, and Human Disease[J]. Microorganisms, 2018, 6(3): 88.

[75] Giraldo A, Gene J, Sutton D A, et al. Phylogeny of Sarocladium (Hypocreales)[J]. Persoonia, 2015, 34: 10-24.

[76] Yao Limin, Wang Hong, Wan Zhe, et al. The High Diversity and Variable Susceptibility of Clinically Relevant Acremonium-Like Species in China[J]. Mycopathologia, 2019, 184(6): 759-773.

[77] Giraldo A, Crous P W. Inside Plectosphaerellaceae[J]. Stud Mycol, 2019, 92: 227-286.

[78] Perez-Cantero A, Guarro J. Sarocladium and Acremonium infections: New faces of an old opportunistic fungus[J]. Mycoses, 2020, 63(11): 1203-1214.

[79] Gupta A K, Jain H C, Lynde C W, et al. Prevalence and epidemiology of onychomycosis in patients visiting physicians' offices: a multicenter canadian survey of 15,000 patients[J]. J Am Acad Dermatol, 2000, 43(2 Pt 1): 244-8.

[80] Fernandez-Silva F, Capilla J, Mayayo E, et al. Evaluation of the efficacies of Amphotericin B, Posaconazole, Voriconazole, and Anidulafungin in a murine disseminated infection by the emerging opportunistic Fungus Sarocladium (Acremonium) kiliense[J]. Antimicrob Agents Chemother, 2013, 57(12): 6265-9.

[81] Guitard J, Degulys A, Buot G, et al. Acremonium sclerotigenum-Acremonium egyptiacum: a multi-resistant fungal pathogen complicating the course of aplastic anaemia[J]. Clin Microbiol Infect, 2014, 20(1): O30-2.

[82] Junior M C, De Moraes Arantes A, Silva H M, et al. Acremonium kiliense: case report and review of published studies[J]. Mycopathologia, 2013, 176(5-6): 417-21.

[83] Tortorano A M, Richardson M, Roilides E, et al. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others[J]. Clin Microbiol Infect, 2014, 20 Suppl 3: 27-46.

[84] Summerbell R C, Gueidan C, Schroers H J, et al. Acremonium phylogenetic overview and revision of Gliomastix, Sarocladium, and Trichothecium[J]. Stud Mycol, 2011, 68: 139-62.

[85] De Hoog G S, Gerrits Van Den Ende A H. Molecular diagnostics of clinical strains of filamentous Basidiomycetes[J]. Mycoses, 1998, 41(5-6): 183-9.

[86] Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species[J]. J Bacteriol, 1990, 172(8): 4238-46.

[87] Rehner S A, Buckley E. A Beauveria phylogeny inferred from nuclear ITS and EF1-alpha sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs[J]. Mycologia, 2005, 97(1): 84-98.

[88] Walsh T J, Mccarthy M W. The expanding use of matrix-assisted laser desorption/ionization-time of flight mass spectroscopy in the diagnosis of patients with mycotic diseases[J]. Expert Rev Mol Diagn, 2019, 19(3): 241-248.

[89] Schrodl W, Heydel T, Schwartze V U, et al. Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization-time of flight analyzer-mediated mass spectrometry[J]. J Clin Microbiol, 2012, 50(2): 419-27.

[90] Nakamura S, Sato H, Tanaka R, et al. Ribosomal subunit protein typing using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for the identification and discrimination of Aspergillus species[J]. BMC Microbiol, 2017, 17(1): 100.

[91] Perez-Cantero A, Guarro J. Current knowledge on the etiology and epidemiology of Scopulariopsis infections[J]. Med Mycol, 2020, 58(2): 145-155.

[92] Woudenberg J H C, Meijer M, Houbraken J, et al. Scopulariopsis and scopulariopsis-like species from indoor environments[J]. Stud Mycol, 2017, 88: 1-35.

[93] Hibbett D S, Taylor J W. Fungal systematics: is a new age of enlightenment at hand?[J]. Nat Rev Microbiol, 2013, 11(2): 129-33.

[94] Sandoval-Denis M, Gene J, Sutton D A, et al. Redefining Microascus, Scopulariopsis and allied genera[J]. Persoonia, 2016, 36: 1-36.

[95] Jagielski T, Sandoval-Denis M, Yu J, et al. Molecular taxonomy of scopulariopsis-like fungi with description of new clinical and environmental species[J]. Fungal Biol, 2016, 120(4): 586-602.

[96] Sandoval-Denis M, Guarro J, Cano-Lira J F, et al. Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi[J]. Stud Mycol, 2016, 83: 193-233.

[97] Mhmoud N A, Siddig E E, Nyuykonge B, et al. Mycetoma caused by Microascus gracilis: a novel agent of human eumycetoma in Sudan[J]. Trans R Soc Trop Med Hyg, 2021: trab010.

[98] Ding Yanna, Steed L L, Batalis N. First reported case of disseminated Microascus gracilis infection in a lung transplant patient[J]. IDCases, 2020, 22: e00984.

[99] Huang Linna, Chen Wenhui, Guo Lijian, et al. Scopulariopsis/Microascus isolation in lung transplant recipients: A report of three cases and a review of the literature[J]. Mycoses, 2019, 62(10): 883-892.

[100] Cuenca-Estrella M, Gomez-Lopez A, Buitrago M J, et al. In vitro activities of 10 combinations of antifungal agents against the multiresistant pathogen Scopulariopsis brevicaulis[J]. Antimicrob Agents Chemother, 2006, 50(6): 2248-50.

[101] Sandoval-Denis M, Sutton D A, Fothergill A W, et al. Scopulariopsis, a poorly known opportunistic fungus: spectrum of species in clinical samples and in vitro responses to antifungal drugs[J]. J Clin Microbiol, 2013, 51(12): 3937-43.

[102] Skora M, Bulanda M, Jagielski T. In vitro activities of a wide panel of antifungal drugs against various Scopulariopsis and Microascus species[J]. Antimicrob Agents Chemother, 2015, 59(9): 5827-9.

[103] Yao Limin, Wan Zhe, Li Ruoyu, et al. In Vitro Triple Combination of Antifungal Drugs against Clinical Scopulariopsis and Microascus Species[J]. Antimicrob Agents Chemother, 2015, 59(8): 5040-3.

[104] Swick B L, Reddy S C, Friedrichs A, et al. Disseminated Scopulariopsis-culture is required to distinguish from other disseminated mould infections[J]. J Cutan Pathol, 2010, 37(6): 687-91.

[105] White T J, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for Phylogenetics[J]. PCR Protoc A Guide Methods Appl, 1990, 18:315–22.

[106] Vilgalys R, Sun B L. Ancient and recent patterns of geographic speciation in the oyster mushroom Pleurotus revealed by phylogenetic analysis of ribosomal DNA sequences[J]. Proc Natl Acad Sci U S A, 1994, 91(10): 4599-603.

[107] Ropars J, Cruaud C, Lacoste S, et al. A taxonomic and ecological overview of cheese fungi[J]. Int J Food Microbiol, 2012, 155(3): 199-210.

[108] Kordalewska M, Jagielski T, Brillowska-Dabrowska A. Rapid Assays for Specific Detection of Fungi of Scopulariopsis and Microascus Genera and Scopulariopsis brevicaulis Species[J]. Mycopathologia, 2016, 181(7-8): 465-74.

[109] Kordalewska M, Kalita J, Bakula Z, et al. PCR-RFLP assays for species-specific identification of fungi belonging to Scopulariopsis and related genera[J]. Med Mycol, 2018, 57(5): 643-648.

[110] Levesque S, Dufresne P J, Soualhine H, et al. A Side by Side Comparison of Bruker Biotyper and VITEK MS: Utility of MALDI-TOF MS Technology for Microorganism Identification in a Public Health Reference Laboratory[J]. PLoS One, 2015, 10(12): e0144878.

[111] Putignani L, Del Chierico F, Onori M, et al. MALDI-TOF mass spectrometry proteomic phenotyping of clinically relevant fungi[J]. Mol Biosyst, 2011, 7(3): 620-9.

分类号:

 R756    

馆藏位置:

 医临时馆    

开放日期:

 2024-04-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式