- 无标题文档
查看论文信息

论文题名(中文):

 代表性钩藤生物碱单体及不同基原钩藤总生物碱的体内成分研究    

作者:

 翟祺    

学号:

 1810307222    

论文语种:

 chi    

学科名称:

 理学 - 药学(可授医学、理学学位) - 生药学    

学生类型:

 硕士    

学校:

 北京大学医学部    

院系:

 药学院    

专业:

 生药学    

第一导师姓名:

 张庆英    

论文完成日期:

 2024-05-03    

论文答辩日期:

 2024-05-20    

论文题名(外文):

 A study on the in vivo components in rat after oral administration of representative Uncaria alkaloids and Uncaria total alkaloids from different origins    

关键词(中文):

 钩藤 ; 生物碱 ; 体内成分 ; 体内代谢产物 ; 药代动力学    

关键词(外文):

 Uncariae Ramulus Cum Uncis ; alkaloid ; in vivo components ; metabolites ; pharmacokinetics    

论文文摘(中文):

钩藤属 (Uncaria) 植物为茜草科 (Rubiaceae) 木质藤本,全球有 34 种,我国有11 种、1变型。《中国药典》规定中药钩藤 (Uncariae Ramulus Cum Uncis)为钩藤 U. rhynchophylla (Miq.) Miq. ex Havil.、大叶钩藤 U. macrophylla Wall.、毛钩藤 U. hirsuta Havil.、华钩藤 U. sinensis (Oliv.) Havil.或无柄果钩藤 U. sessilifructus Roxb.的干燥带钩枝茎,为临床常用的多基原中药。我国大部分地区使用的商品钩藤主要为钩藤U. rhynchophylla,其次为华钩藤U. sinensis,而某些地区亦将钩藤属其他植物作为钩藤的习用品或代用品使用,如攀茎钩藤U. scandens (Smith) Hutchins.、倒挂金钩U. lancifolia Hutchins.、平滑钩藤U. laevigata Wall. ex G. Don等。现代药理研究表明,钩藤生物碱具有良好的中枢神经系统活性,具有抗帕金森病、抗阿尔兹海默症、神经保护等作用。

中药由于其生物来源、生态环境、炮制方法、配伍应用及生产工艺等的多样性,导致其化学体系复杂,成分结构多样;此外,中药通过口服给药进入体内后会以原型与代谢产物多种形式存在,进一步导致真正药效成分难以明确。本课题组前期从钩藤(U. rhynchophylla)中分离鉴定了48个生物碱,包括22个生物碱苷元,26个生物碱葡萄糖苷,其中17个为新化合物,基本阐明了钩藤总生物碱的化学成分组成;同时建立了针对钩藤(U. rhynchophylla)中所含16个生物碱的UPLC-Qtrap-MS/MS定量分析方法,确定了16个生物碱的药代动力学特征,对比分析了16个生物碱在大鼠血浆及大脑中的含量,基本阐明了钩藤生物碱的入血和入脑成分及其药动学特点。然而大量研究表明,不同基原钩藤化学成分存在较大差别,而不同基原钩藤的体内成分在体内发生怎样的吸收代谢转化、其体内成分有何异同、哪些化学成分(群)是钩藤真正关键药效物质等问题尚不清楚,因此,对不同基原钩藤生物碱的体内成分,尤其是入血与入脑成分进行系统深入的分析,是阐释钩藤多基原入药合理性的重要有效途径。

首先,本论文对四个代表性生物碱单体,即钩藤生物碱内盐D、缝籽嗪甲醚、钩藤碱、异钩藤碱,进行了药代动力学研究与体内代谢产物分析。分别灌胃大鼠四种生物碱单体,分析药代动力学特征,发现四种生物碱吸收速率较快,体内驻留时间较短;代谢产物分析表明,钩藤生物碱内盐D共检测出23个可能的代谢产物,缝籽嗪甲醚共检测出26个可能的代谢产物,钩藤碱共检测到33个可能的代谢产物,异钩藤碱共检测到23个可能的代谢产物,且相同结构母核的生物碱具有相似的代谢途径。对生物碱单体的体内分析初步揭示了钩藤生物碱在体内吸收、代谢的规律,为不同基原钩藤总生物碱的体内研究奠定了基础。

接下来,在前期建立的针对钩藤(U. rhynchophylla)中所含的16个生物碱的UPLC-Qtrap-MS/MS方法的基础上,综合考虑不同基原钩藤中主要生物碱的种类,本论文构建了适用于多种基原钩藤中20个生物碱的UPLC-MRM-MS定量分析方法,对五种基原钩藤(钩藤U. rhynchophylla、大叶钩藤U. macrophylla、华钩藤U. sinensis、无柄果钩藤U. sessilifructus和攀茎钩藤U. scandens)总生物碱中的20个生物碱进行了定量研究,结果表明,五种基原钩藤总生物碱的化学组成差异较大,钩藤以吲哚生物碱为主,其他四种基原以氧化吲哚生物碱为主。该部分研究初步揭示了五种基原钩藤生物碱的化学成分组成,为钩藤体内成分的研究提供了化学依据。

最后,对五种基原钩藤总生物碱的体内成分进行研究。分别灌胃大鼠五种基原钩藤总生物碱,对五种基原钩藤总生物碱在大鼠血浆、尿液、粪便、大脑和脑脊液中的原型和代谢产物的定性分析表明,在所有生物样本中共检测到465个体内成分(钩藤:202个,大叶钩藤:208个,华钩藤:140个,无柄果钩藤:114个,攀茎钩藤:60个),五种基原钩藤体内共有成分仅有8个,多数体内成分仅在某一种基原钩藤中被检测到,表明五种基原总生物碱的体内成分具有较大差异性。同时采用建立的UPLC-MRM-MS定量分析方法,对大鼠血浆与大脑中的20个生物碱原型成分进行定量测定,对比分析五种基原钩藤总生物碱在大脑与血浆中含量的异同,结果表明,20个生物碱均可被吸收入血并透过血脑屏障,但不同结构类型、不同立体异构和取代基的生物碱入血和入脑的难易有所不同。五种基原钩藤总生物碱的体内成分表明钩藤U. rhynchophylla总生物碱的体内成分与其他四种基原的相似度最低,其特有成分以吲哚生物碱为主,其他四种基原特有成分以氧化吲哚生物碱为主。上述研究初步揭示了不同基原钩藤总生物碱体内成分的异同,为不同基原钩藤体内药效物质的深入研究提供了重要参考。

文摘(外文):

The genus Uncaria (family Rubiaceae) has 34 species in the whole world, and 11 species and 1 variety are found in China. According to the Chinese Pharmacopoeia, Uncariae Ramulus Cum Uncis (“Gou-Teng” in Chinese), a famous Traditional Chinese Medicine (TCM) with multiple origins, is derived from the dried hook-bearing stems and branches of Uncaria rhynchophylla (Miq.) Miq. ex Havil., Uncaria macrophylla Wall., Uncaria hirsute Havil, Uncaria sinensis (Oliv.) Havil., and Uncaria sessilifructus Roxb.. The commercial Uncariae Ramulus Cum Uncis used in most areas of China is mainly derived from U. rhynchophylla, followed by U. sinensis, while other species of the genus Uncaria, such as Uncaria scandens (Smith) Hutchins, Uncaria lancifolia Hutchins, Uncaria laevigata Wall. ex G. Don, and so on, are also used as the habitual products or substitutes for Uncariae Ramulus Cum Uncis in some areas. The modern pharmacological studies have shown that the alkaloids of Uncariae Ramulus Cum Uncis have good biological activities, such as anti-Parkinson's disease, anti-Alzheimer's disease and neuroprotection, and so on.

Due to the diversity of biological sources, ecological environments, compatibility and production processes, the chemical compositions of TCMs are much complicated. Moreover, the various forms of metabolites after orally administration results in the more difficulty in clarification of the effective components of TCMs. In our previous study, 48 alkaloids were isolated and identified from U. rhynchophylla, of which 26 were alkaloidal glucosides and 17 were new compounds, which generally clarified the chemical constituents of U. rhynchophylla alkaloids. In addition, a UPLC-Qtrap-MS/MS method was also established for the quantitative analysis of 16 alkaloids of U. rhynchophylla, and the contents of 16 alkaloids in plasma and brain, as well as the pharmacokinetic profiles of the 16 alkaloids, were determined. A large number of studies have shown that the chemical compositions of Uncariae Ramulus Cum Uncis from different origins vary greatly, but the in vivo chemical components of Uncariae Ramulus Cum Uncis from different origins are still unclear. Therefore, a systematic and in-depth analysis of the in vivo components of the alkaloids of Uncariae Ramulus Cum Uncis from different origins should be carried out.

Based on the UPLC-Qtrap-MS/MS method for 16 alkaloids of U. rhynchophylla, a UPLC-MRM-MS method for the quantitative analysis of 20 alkaloids was established, and the contents of 20 alkaloids in the total alkaloids of Uncariae Ramulus Cum Uncis from five origins, including U. rhynchophylla, U. macrophylla, U. sinensis, U. sessilifructus and U. scandens, were determined and provided a chemical basis for further study of their in vivo components.

Then, the pharmacokinetic study and in vivo metabolite analysis of four representative alkaloids, including rhynchophyllionium D, geissoschizine methyl ether, rhynchophylline and isorhynchophylline, were investigated. It was found that the four alkaloids were absorbed, reached to the maximum blood concentration and excreted rapidly. A total of 23 possible metabolites of rhynchophyllionium D, 26 possible metabolites of geissoschizine methyl ether, 33 possible metabolites of rhynchophylline and 23 possible metabolites of isorhynchophylline were detected, and the alkaloids with same nucleus structures showed similar metabolic pathways. The in vivo analysis of the four alkaloids revealed the metabolic pathways of representative alkaloids, and laid a foundation for the study of in vivo components of total alkaloids of Uncariae Ramulus Cum Uncis.

Next, the in vivo components after orally administration of the total alkaloids of Uncariae Ramulus Cum Uncis from five origins were investigated and analyzed comparatively. The prototypes and metabolites of the total alkaloids of Uncariae Ramulus Cum Uncis from five origins in rat plasma, urine, feces, brain and cerebrospinal fluid were characterized, and a total of 465 in vivo constituents were detected in all samples, including 202 from U. rhynchophylla, 208 from U. macrophylla, 140 from U. sinensis, 114 from U. sessilifructu and 60 from U. scandens. Only eight constituents were detected in all five origins of Uncariae Ramulus Cum Uncis, while most constituents were only detected in one origin, suggesting the in vivo components of the total alkaloids of Uncariae Ramulus Cum Uncis from the five origins were different greatly. Furthermore, a quantitative analysis of the 20 alkaloids in the plasm and brain after orally administration of the total alkaloids of Uncariae Ramulus Cum Uncis from five origins were investigated, and the results showed that all the 20 alkaloids can be absorbed into blood and passed through the blood-brain barrier, but the alkaloids with different structural nucleus, stereoisomers and substituent groups might be different in the ability of absorption and passing through the blood-brain barrier. Generally, the in vivo components of the total alkaloids of U. rhynchophylla that were characterized by indole alkaloids, was the least similar to the other four origins that were characterized by oxindole alkaloids. The above results revealed the similarities and differences of in vivo components of Uncariae Ramulus Cum Uncis from different species, and laid a foundation for the further study on the in vivo effective components of Uncariae Ramulus Cum Uncis.

论文目录:
第一章 文献综述 1
1.1 钩藤生物碱类化学成分分析及其质谱裂解规律研究概况 2
1.1.1 不同基原钩藤生物碱类成分对比分析 2
1.1.2 钩藤生物碱的质谱裂解规律 4
1.2 钩藤生物碱的体内过程研究概况 6
1.2.1 钩藤生物碱体内代谢产物研究概况 6
1.2.2 钩藤生物碱的血浆药代动力学研究概况 9
1.2.3 小结 11
第二章 四种典型钩藤生物碱单体的体内成分分析 17
2.1 实验仪器与材料 17
2.1.1 实验仪器 17
2.1.2 药品与试剂 18
2.1.3 实验动物 18
2.2 四种典型钩藤生物碱单体的血浆药代动力学分析 19
2.2.1 实验方法 19
2.2.2 结果与讨论 21
2.2.3 小结 30
2.3 四种典型钩藤生物碱单体的体内代谢产物定性分析 31
2.3.1 实验方法 31
2.3.2 结果与讨论 33
2.3.3 小结 104
第三章 五种基原钩藤总生物碱的制备及MRM定量分析 105
3.1 不同基原钩藤总生物碱的制备 105
3.1.1 实验仪器与材料 105
3.1.2 实验方法 106
3.1.3 结果与讨论 108
3.2 不同基原钩藤总生物碱中20个化合物的含量测定 112
3.2.1 实验仪器与材料 113
3.2.2 实验方法 114
3.2.3 结果与讨论 117
3.3 小结 121
第四章 五种基原钩藤总生物碱的体内成分分析 123
4.1 实验仪器与材料 123
4.1.1 实验仪器 123
4.1.2 药品与试剂 124
4.1.3 实验动物 124
4.2 五种基原钩藤总生物碱体内原型及代谢产物的定性分析 124
4.2.1 实验方法 124
4.2.2 结果与讨论 125
4.3 五种基原钩藤总生物碱单次给药后体内成分的定量分析 130
4.3.1 实验方法 130
4.3.2 结果与讨论 131
4.4 小结 138
第五章 结论与展望 141
参考文献 143
附录A 20个生物碱在血浆、大脑中含量的汇总 149
附录B UPLC-QTOF-MS检测到的五种基原钩藤总生物碱体内成分 151
致谢 185
北京大学学位论文原创性声明和使用授权说明 187
个人简历、在学期间发表的学术论文与研究成果 189
参考文献:

[1] 罗献瑞. 中国植物志[M]. 71. 北京: 科学出版社, 1999.

[2] 国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2020.

[3] 阚振棣, 刘岩, 杜武勋, 等. 天麻钩藤饮研究进展[J]. 河南中医, 2017, 37(02): 367-370.

[4] 江芳, 郭娜, 童文琴, 等. 钩藤属植物研究进展[J]. 海峡药学, 2017, 29(04): 5-13.

[5] 何昱 洪, 王智华. 钩藤及其有效成分的药理研究进展[J]. 上海中医药杂志, 2003(11): 57-60.

[6] 刘佳, 富志军. 钩藤的研究概况[J]. 海峡药学, 2006(05): 90-93.

[7] 张建钢, 陈纪军, 耿长安. 《中国药典》收载的钩藤基原植物吲哚生物碱研究进展[J]. 中国中药杂志, 2019, 44(04): 685-695.

[8] Cao R, Wang Y, Zhou Y, et al. Advanced Researches of Traditional Uses, Phytochemistry, Pharmacology, and Toxicology of Medical Uncariae Ramulus Cum Uncis[J]. Journal of Ethnopharmacology, 2024, 325: 117848-117848.

[9] 宋欣濛, 薛睿, 季宇彬. 钩藤中吲哚类生物碱化学成分及药理活性研究进展[J]. 亚太传统医药, 2014, 10(05): 64-68.

[10] Ndagijimana A, Wang X M, Pan G X, et al. A Review on Indole Alkaloids Isolated from Uncaria rhynchophylla and their Pharmacological Studies[J]. Fitoterapia, 2013, 86: 35-47.

[11] Pengsuparp T, Indra B, Nakagawasai O, et al. Pharmacological Studies of Geissoschizine Methyl Ether, Isolated from Uncaria sinensis Oliv., in the Central Nervous System[J]. European Journal of Pharmacology, 2001, 425(3): 211-218.

[12] Sakakibara I, Terabayashi S, Kubo M, et al. Effect on Locomotion of Indole Alkaloids from the Hooks of Uncaria Plants[J]. Phytomedicine, 1999, 6(3): 163-168.

[13] Ueda T, Ugawa S, Ishida Y, et al. Geissoschizine Methyl Ether has Third-generation Antipsychotic-like Actions at the Dopamine and Serotonin Receptors[J]. European Journal of Pharmacology, 2011, 671(1-3): 79-86.

[14] Yang W, Ip S P, Liu L, et al. Uncaria rhynchophylla and its Major Constituents on Central Nervous System: A Review on Their Pharmacological Actions[J]. Current Vascular Pharmacology, 2020, 18(4): 346-357.

[15] Nishi A, Yamaguchi T, Sekiguchi K, et al. Geissoschizine Methyl Ether, an Alkaloid in Uncaria Hook, is a Potent Serotonin1A Receptor Agonist and Candidate for Amelioration of Aggressiveness and Sociality by YOKUKANSAN[J]. Neuroscience, 2012, 207: 124-136.

[16] Xian Y F, Ip S P, Li H Q, et al. Isorhynchophylline Exerts Antidepressant-like Effects in Mice via Modulating Neuroinflammation and Neurotrophins: Involvement of the PI3K/Akt/GSK-3β Signaling Pathway[J]. Faseb Journal, 2019, 33(9): 10393-10408.

[17] Zhang Q, Zhao J J, Xu J, et al. Medicinal Uses, Phytochemistry and Pharmacology of the Genus Uncaria [J]. Journal of Ethnopharmacology, 2015, 173: 48-80.

[18] Qin N, Lu X, Liu Y, et al. Recent Research Progress of Uncaria spp. Based on Alkaloids: Phytochemistry, Pharmacology and Structural Chemistry[J]. European Journal of Medicinal Chemistry, 2021, 210.

[19] Kondo H F T, Tomita M. Alkaloids of Ouronparia rhynchophylla Matsum[J]. Yakugaku Zasshi, 1928, 48: 321-337.

[20] Qin J X, Hong Y, Zhao L Y, et al. The Basic Chemical Substances of Total Alkaloids of Uncaria rhynchophylla and their Anti-neuroinflammatory Activities[J]. Journal of Asian Natural Products Research, 2024.

[21] Fan Q F, Na Z, Ji K L, et al. A Novel Pentacyclic Triterpene from the Canes of Uncaria sessilifructus (Rubiaceae)[J]. Natural Product Research, 2022, 36(2): 668-673.

[22] Huang L, Wang Z M, Zhao Q, et al. Chemical Constituents from Uncaria laevigata and Their Anti-Inflammatory Activities and Action Mechanism[J]. Natural Product Research, 2024.

[23] Jia J F, Zhang Y, Huang X J, et al. New Monoterpenoid Alkaloids from the Aerial Parts of Uncaria hirsuta[J]. Natural Product Research, 2014, 28(13): 971-975.

[24] Liang X M, Wei Y D, Hou X Z, et al. Triterpenoids from Uncaria macrophylla as Ferroptosis Inhibitors[J]. Phytochemistry, 2023, 206.

[25] Pan H Q, Yang W Z, Yao C L, et al. Mass Defect Filtering-Oriented Classification and Precursor Ions List-Triggered High-Resolution Mass Spectrometry Analysis for the Discovery of Indole Alkaloids from Uncaria sinensis[J]. Journal of Chromatography A, 2017, 1516: 102-113.

[26] Tan M A, Ishikawa H. Constituents of Uncaria lanosa f. philippinensis and Their Anti-amyloidogenic Activity[J]. Natural Product Research, 2023.

[27] Wang K, Zhou X Y, Wang Y Y, et al. Macrophyllionium and Macrophyllines A and B, Oxindole Alkaloids from Uncaria macrophylla [J]. Journal of Natural Products, 2011, 74(1): 12-15.

[28] Wu T S, Chan Y Y. Constituents of Leaves of Uncaria-Hirsuta Haviland[J]. Journal of the Chinese Chemical Society, 1994, 41(2): 209-212.

[29] Xin W B, Chou G X, Wang Z T. Two New Alkaloids from the Leaves of Uncaria hirsuta Haviland[J]. Chinese Chemical Letters, 2008, 19(8): 931-933.

[30] Xin W B, Chou G X, Wang Z T. Triterpenoids and Saponins from the Leaves of Uncaria hirsuta[J]. Helvetica Chimica Acta, 2009, 92(4): 638-644.

[31] Yang W Z, Zhang Y B, Pan H Q, et al. Supercritical Fluid Chromatography for Separation and Preparation of Tautomeric 7-Epimeric Spiro Oxindole Alkaloids from Uncaria macrophylla[J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 134: 352-360.

[32] Zhang M J, Liu B, Liao S G, et al. Uncarilic Acid and Secouncarilic Acid, Two New Triterpenoids from Uucaria sessilifructus [J]. Molecules, 2013, 18(8): 9727-9734.

[33] Zhang Q H, Lin C H, Duan W J, et al. Preparative Separation of Six Rhynchophylla Alkaloids from Uncaria macrophylla Wall by pH-Zone Refining Counter-Current Chromatography[J]. Molecules, 2013, 18(12): 15490-15500.

[34] Pan H, Yang W, Zhang Y, et al. An Integrated Strategy for the Systematic Characterization and Discovery of New Indole Alkaloids from Uncaria rhynchophylla by UHPLC/DAD/LTQ-Orbitrap-MS[J]. Analytical and Bioanalytical Chemistry, 2015, 407(20): 6057-6070.

[35] 陈小媛, 康梦莹, 马家宝, 等. 钩藤碱含量测定方法研究概述[J]. 亚太传统医药, 2014, 10(06): 41-42.

[36] 刘明, 汤建林, 胡岚岚, 等. 中药钩藤中钩藤碱含量的测定[J]. 第三军医大学学报, 2010, 32(14): 1539-1541.

[37] 张荣, 刘睿, 刘启德, 等. 钩藤中钩藤碱、异钩藤碱的提取与含量测定[J]. 中药新药与临床药理, 2009, 20(04): 338-341.

[38] 李思蒙, 侴桂新. 钩藤药材中异钩藤碱含量的超高效液相色谱和高效液相色谱法测定[J]. 时珍国医国药, 2010, 21(12): 3195-3197.

[39] 刘慧琼, 李国成, 卢绮雯, 等. 大叶钩藤中柯诺辛碱的含量测定[J]. 时珍国医国药, 2011, 22(01): 163-164.

[40] 杨海船, 张赟赟, 张颖, 等. 大叶钩藤中柯诺辛碱B及柯诺辛碱的含量测定及分析[J]. 广西科学, 2021, 28(04): 423-427.

[41] 严愉妙, 罗超华, 方丽华, 等. 广东4种钩藤中毛钩藤碱及总碱含量的HPLC、UV测定[J]. 时珍国医国药, 2012, 23(12): 2974-2977.

[42] 汪建龙. 高效液相色谱法在中药分析中的应用进展[J]. 现代中西医结合杂志, 2011, 20(16): 2072-2074.

[43] Hou J, Feng R, Zhang Y, et al. Characteristic Chromatogram: A Method of Discriminate and Quantitative Analysis for Quality Evaluation of Uncaria Stem with Hooks[J]. Planta Medica, 2018, 84(6-7): 449-456.

[44] 许玲玲, 安睿, 王新宏. 液质联用技术在中药分析中的应用[J]. 中成药, 2006(02): 239-246.

[45] Wei S, Luo Z, Cui S, et al. Molecular Identification and Targeted Quantitative Analysis of Medicinal Materials from Uncaria Species by DNA Barcoding and LC-MS/MS[J]. Molecules, 2019, 24(1).

[46] 沈保家, 秦昆明, 刘启迪, 等. 二维色谱技术及其在中药领域中的应用[J]. 中国科学:化学, 2013, 43(11): 1480-1489.

[47] 黄竞怡, 佟玲, 丁黎. 二维液相色谱在中药分析的应用[J]. 药学进展, 2015, 39(05): 357-363.

[48] Pan H, Yao C, Yang W, et al. An Enhanced Strategy Integrating Offline Two-Dimensional Separation and Step-Wise Precursor Ion List-Based Raster-Mass Defect Filter: Characterization of Indole Alkaloids in Five Botanical Origins of Uncariae Ramulus Cum Unicis as An Exemplary Application[J]. Journal of Chromatography A, 2018, 1563: 124-134.

[49] Li H, Wei W, Li Z, et al. An Enhanced Strategy Integrating Offline Two-dimensional Separation with Data Independent Acquisition Mode and Deconvolution: Characterization of Metabolites of Uncaria rhynchophylla in Rat Plasma as A Case[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2021, 1181.

[50] 王克威. 药理学[M]. 北京: 北京大学医学出版社, 2018.

[51] 乔雪, 果德安, 叶敏. 中药体内代谢研究的思路与方法[J]. 世界科学技术-中医药现代化, 2014, 16(03): 532-537.

[52] 杨秀伟. 基于体内过程的中药有效成分和有效效应物质的发现策略[J]. 中国中药杂志, 2007(05): 365-370.

[53] 贾晓斌, 陈彦, 李霞, 等. 中药复方物质基础研究新思路和方法[J]. 中华中医药杂志, 2008(05): 420-425.

[54] 李萍, 齐炼文, 闻晓东, 等. 中药效应物质基础和质量控制研究的思路与方法[J]. 中国天然药物, 2007(01): 1-9.

[55] 屠鹏飞, 史社坡, 姜勇. 中药物质基础研究思路与方法[J]. 中草药, 2012, 43(02): 209-215.

[56] Kushida H, Matsumoto T, Ikarashi Y. Properties, Pharmacology, and Pharmacokinetics of Active Indole and Oxindole Alkaloids in Uncaria Hook[J]. Frontiers in Pharmacology, 2021, 12.

[57] Zhang H, Duan S, Wang L, et al. Identification of the Absorbed Components and their Metabolites of Tianma-Gouteng Granule in Rat Plasma and Bile Using Ultra-high-performance Liquid Chromatography Combined with Quadrupole Time-of-flight Mass Spectrometry[J]. Biomedical Chromatography, 2019, 33(4).

[58] Kushida H, Matsumoto T, Igarashi Y, et al. Metabolic Profiling of the Uncaria Hook Alkaloid Geissoschizine Methyl Ether in Rat and Human Liver Microsomes Using High-Performance Liquid Chromatography with Tandem Mass Spectrometry[J]. Molecules, 2015, 20(2): 2100-2114.

[59] Wang J, Qi P, Hou J, et al. Profiling and Identification of Metabolites of Isorhynchophylline in Rats by Ultra High performance Liquid Chromatography and Linear Ion Trap Orbitrap Mass Spectrometry[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033: 147-156.

[60] Nakazawa T, Banba K-I, Hata K, et al. Metabolites of Hirsuteine and Hirsutine, the Major Indole Alkaloids of Uncaria rhynchophylla, in Rats[J]. Biological & Pharmaceutical Bulletin, 2006, 29(8): 1671-1677.

[61] Wang J, Qi P, Hou J, et al. The Profiling of the Metabolites of Hirsutine in Rat by Ultra-high Performance Liquid Chromatography Coupled with Linear Ion Trap Orbitrap Mass Spectrometry: An Improved Strategy for the Systematic Screening and Identification of Metabolites in Multi-samples In Vivo [J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 134: 149-157.

[62] Wang W, Li X, Chen Y, et al. Structural Elucidation of Rat Biliary Metabolites of Corynoxeine and their Quantification Using LC-MSn [J]. Biomedical Chromatography, 2014, 28(9): 1219-1228.

[63] Wang W, Luo S, Chen Y, et al. Effective Separation and Simultaneous Determination of Corynoxeine and Its Metabolites in Rats by High-Performance Liquid Chromatography with Tandem Mass Spectrometry and Application to Pharmacokinetics and In Vivo Distribution in Main Organs[J]. Analytical Sciences, 2016, 32(6): 705-707.

[64] Zhao L Z, Qi W, Chen F F, et al. Metabolic Profile of Isocorynoxeine in Rats Obtained by Ultra-High Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry[J]. European Journal of Drug Metabolism and Pharmacokinetics, 2016, 41(5): 615-626.

[65] Zhao L, Zang B, Qi W, et al. Pharmacokinetic Study of Isocorynoxeine Metabolites Mediated by Cytochrome P450 Enzymes in Rat and Human Liver Microsomes[J]. Fitoterapia, 2016, 111: 49-57.

[66] Qi W, Chen F, Sun J, et al. Isolation and Identification of Twelve Metabolites of Isocorynoxeine in Rat Urine and their Neuroprotective Activities in HT22 Cell Assay[J]. Planta Medica, 2015, 81(1): 46-55.

[67] Kushida H, Fukutake M, Tabuchi M, et al. Simultaneous Quantitative Analyses of Indole and Oxindole Alkaloids of Uncaria Hook in Rat Plasma and Brain after Oral Administration of the Traditional Japanese Medicine Yokukansan Using High-performance Liquid Chromatography with Tandem Mass Spectrometry[J]. Biomedical Chromatography, 2013, 27(12): 1647-1656.

[68] Kushida H, Matsumoto T, Ikarashi Y, et al. Gender Differences in Plasma Pharmacokinetics and Hepatic Metabolism of Geissoschizine Methyl Ether from Uncaria Hook in Rats[J]. Journal of Ethnopharmacology, 2021, 264.

[69] Kitagawa H, Munekage M, Ichikawa K, et al. Pharmacokinetics of Active Components of Yokukansan, a Traditional Japanese Herbal Medicine after a Single Oral Administration to Healthy Japanese Volunteers: A Cross-Over, Randomized Study[J]. Plos One, 2015, 10(7).

[70] Gai Y, Chen H, Liu W, et al. The Metabolism of YiGan San and Subsequent Pharmacokinetic Evaluation of Four Metabolites in Rat Based on Liquid Chromatography with Tandem Mass Spectrometry[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2014, 972: 22-28.

[71] Tian X, Xu Z, Chen M, et al. Simultaneous Determination of Eight Bioactive Compounds by LC-MS/MS and its Application to the Pharmacokinetics, Liver First-pass Effect, Liver and Brain Distribution of Orally Administrated Gouteng-Baitouweng (GB) in Rats[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2018, 1084: 122-131.

[72] Jiang S, Yang X, Wang Z, et al. Biotransformation and Pharmacokinetic Studies of Four Alkaloids from Uncaria rhynchophylla in Rat Plasma by Ultra-performance Liquid Chromatography with Tandem Mass Spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 218.

[73] Matsumoto T, Ikarashi Y, Takiyama M, et al. Brain Distribution of Geissoschizine Methyl Ether in Rats using Mass Spectrometry Imaging Analysis[J]. Scientific Reports, 2020, 10(1).

[74] Chen L, Ma J, Wang X, et al. Simultaneous Determination of Six Uncaria Alkaloids in Mouse Blood by UPLC-MS/MS and Its Application in Pharmacokinetics and Bioavailability[J]. Biomed Research International, 2020, 2020.

[75] Han A, Lin G, Cai J, et al. Pharmacokinetic Study on Hirsutine and Hirsuteine in Rats Using UPLC-MS/MS[J]. Acta Chromatographica, 2019, 31(2): 99-104.

[76] Laus G. Kinetics of Isomerization of Tetracyclic spiro Oxindole Alkaloids[J]. Journal of the Chemical Society-Perkin Transactions 2, 1998(2): 315-317.

[77] Sakakibara I, Takahashi H, Terabayashi S, et al. Effect of Oxindole Alkaloids from the Hooks of Uncaria macrophylla on Thiopental-induced Hypnosis[J]. Phytomedicine, 1998, 5(2): 83-86.

[78] Wang X, Zheng M, Liu J, et al. Differences of First-pass Effect in the Liver and Intestine Contribute to the Stereoselective Pharmacokinetics of Rhynchophylline and Isorhynchophylline Epimers in Rats[J]. Journal of Ethnopharmacology, 2017, 209: 175-183.

[79] Zhang C, Wu X, Xian Y, et al. Evidence on Integrating Pharmacokinetics to Find Truly Therapeutic Agent for Alzheimer's Disease: Comparative Pharmacokinetics and Disposition Kinetics Profiles of Stereoisomers Isorhynchophylline and Rhynchophylline in Rats[J]. Evidence-Based Complementary and Alternative Medicine, 2019, 2019.

[80] Ishida Y, Ebihara K, Tabuchi M, et al. Yokukansan, a Traditional Japanese Medicine, Enhances the L-DOPA-Induced Rotational Response in 6-Hydroxydopamine-Lesioned Rats: Possible Inhibition of COMT[J]. Biological & Pharmaceutical Bulletin, 2016, 39(1): 104-113.

[81] Nakagawa T, Nagayasu K, Nishitani N, et al. YOKUKANSAN Inhibits Morphine Tolerance and Physical Dependence in Mice: The Role of α2A-Adrenoceptor[J]. Neuroscience, 2012, 227: 336-349.

[82] Fu A K Y, Hung K-W, Huang H, et al. Blockade of EphA4 Signaling Ameliorates Hippocampal Synaptic Dysfunctions in Mouse Models of Alzheimer's Disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(27): 9959-9964.

[83] Li X-M, Zhang X-J, Dong M-X. Isorhynchophylline Attenuates MPP+-Induced Apoptosis Through Endoplasmic Reticulum Stress- and Mitochondria-Dependent Pathways in PC12 Cells: Involvement of Antioxidant Activity[J]. Neuromolecular Medicine, 2017, 19(4): 480-492.

[84] Xian Y-F, Fan D, Ip S-P, et al. Antidepressant-Like Effect of Isorhynchophylline in Mice[J]. Neurochemical Research, 2017, 42(2): 678-685.

[85] Wang X, Zheng M, Liu J, et al. Differences of First-pass Effect in the Liver and Intestine Contribute to the Stereoselective Pharmacokinetics of Rhynchophylline and Isorhynchophylline Epimers in Rats[J]. Journal of Ethnopharmacology, 2017, 209: 175-183.

[86] Ma B, Wang J, Sun J, et al. Permeability of Rhynchophylline across Human Intestinal Cell In Vitro

[J]. International Journal of Clinical and Experimental Pathology, 2014, 7(5): 1957-1966.

分类号:

 R93    

开放日期:

 2024-10-04    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式