- 无标题文档
查看论文信息

论文题名(中文):

 前列腺癌超声介导微泡空化的生物学效应研究    

作者:

 夏海缀    

学号:

 B1811110441    

论文语种:

 chi    

学科名称:

 医学 - 临床医学(专业学位) - 外科学    

学生类型:

 博士    

学校:

 北京大学医学部    

院系:

 第三临床医学院    

专业:

 外科学    

第一导师姓名:

 卢剑    

论文完成日期:

 2021-05-01    

论文答辩日期:

 2021-05-20    

论文题名(外文):

 Biological effects of ultrasound-mediated microbubble cavitation on prostate cancer    

关键词(中文):

 前列腺癌 ; 化疗 ; 微泡 ; 超声 ; 空化 ; 免疫    

关键词(外文):

 Prostate cancer ; Chemotherapy ; Microbubble ; Ultrasound ; Cavitation ; Immune    

论文文摘(中文):

【目的】

探索超声介导的微泡空化效应对前列腺癌化疗的增敏作用及对肿瘤免疫微环境的影响。

【方法】

1. 在联合紫杉醇和微泡的条件下,分别以不同频率(3 MHz、4 MHz、5 MHz)和机械指数(0.2、0.4、0.6)的超声辐照RM-1细胞,检测治疗后细胞活力,确定最适频率及机械指数。使用该频率和机械指数的超声+微泡联合紫杉醇处理RM-1细胞,检测处理后细胞活力和凋亡率,明确其对化疗的增敏效果。进一步利用钙黄绿素检测超声+微泡辐照后即刻细胞通透性变化,探索其增敏化疗的可能机制。

2. 利用RM-1细胞构建小鼠前列腺癌原位肿瘤模型,应用超声+微泡联合白蛋白结合型紫杉醇治疗前列腺癌小鼠,观察肿瘤生长及小鼠生存情况,并设置单纯化疗组、超声+微泡组和空白对照组进行对比,在动物层面验证超声介导的微泡空化效应增敏化疗效果。进一步提取治疗后各组小鼠前列腺癌中肿瘤浸润淋巴细胞,流式检测CD8+ T细胞表面PD-1和CTLA-4的表达情况、CD4+ T细胞内Foxp3表达和其表面CTLA-4的表达情况,以探索空化效应对肿瘤免疫微环境的影响。

【结果】

1. 频率为3 MHz时细胞活力(37.97 ± 3.51%)显著低于4 MHz (P<0.001)和5 MHz (P<0.001);机械指数为0.6时细胞活力(29.05 ± 5.33%)显著低于机械指数为0.2 (P<0.001)和0.4时(P=0.001)。使用频率为3 MHz、机械指数为0.6的超声+微泡辅助紫杉醇化疗,RM-1细胞的活力显著低于单纯化疗(33.35 ± 8.23% vs 70.42 ± 8.72%, P<0.001),凋亡率则显著增多(14.46 ± 0.22% vs 6.63 ± 0.93%, P<0.001)。经过超声+微泡辐照后,细胞通透性增加,钙黄绿素荧光信号阳性细胞率显著高于对照组(15.79 ± 0.93% vs 2.37 ± 0.72%, P<0.001)。

2. 成功构建小鼠前列腺癌原位肿瘤模型,联合治疗组的肿瘤体积明显小于单纯化疗组(166 ± 34 mm3 vs 249 ± 18 mm3, P=0.005),该组小鼠的平均存活时间长于单纯化疗组(16.20 ± 1.99 d vs 14.24 ± 2.77 d, P=0.031);超声+微泡组与对照组的肿瘤体积 (481 ± 96 mm3 vs 444 ± 145 mm3, P=0.687)和小鼠的存活时间(11.54 ± 3.30 d vs 12.25 ± 2.93 d, P=0.507)均无明显差异。肿瘤淋巴细胞的流式检测结果显示,超声+微泡组的CD8+ T细胞中CTLA-4+细胞比例(P=0.017)和PD-1+/ CTLA-4+细胞(P=0.032)比例低于Control组。而在PTX+US+MB组中,这两个比例均略高于PTX组,但是缺乏明显的统计学意义。

【结论】

超声介导的微泡空化效应能增敏前列腺癌的化疗效果,其机制可能为空化效应增加肿瘤细胞的通透性,从而提高局部化疗药浓度。单纯的空化效应可下调肿瘤微环境中CD8+ T细胞表面PD-1及CTLA-4的表达,但是在化疗的同时联合空化效应呈现出上调CD8+ T细胞表面PD-1及CTLA-4表达的趋势。

文摘(外文):

[Objective]

To explore the effect of ultrasound (US)-mediated microbubble (MB) cavitation on enhancing the efficacy of chemotherapy for treatment of prostate cancer and its effect on the tumor immune microenvironment.

[Methods]

1. RM-1 cells were treated with US at different frequencies (3 MHz, 4 MHz and 5 MHz) and mechanical index (MI) (0.2, 0.4 and 0.6) in combination with paclitaxel (PTX) and MB. Cell viabilities were measured after treatment to determine the optimal frequency and MI. Then RM-1 cell suspensions were then treated with US at the optimal frequency and MI in combination with PTX and MB. And cell viabilities and cellular apoptosis were detected to demonstrate the role of US+MB in enhancing the efficacy of chemotherapy. Membrane permeability was evaluated by calcein after treated with US+MB to explore the mechanism of increasing the efficacy of chemotherapy.

2. The orthotopic mouse model of RM-1 prostate cancer was developed and these mice were divided into four groups: a US+MB+PTX group, a PTX group, a US+MB group and a control group. In vivo, the chemotherapeutic drug PTX was albumin-bound paclitaxel. Tumor growth and survival were recorded and compared in different groups to verify the effect of US-mediated MB cavitation on enhancing the efficacy of chemotherapy of prostate cancer in vivo. Tumor infiltrating lymphocytes were extracted from prostate cancer in each group. The expression of PD-1 and CTLA-4 on CD8+ T cells and the expression of Foxp3 in CD4+ T cells and CTLA-4 on CD4+ T cells were detected by flow cytometry to explore the influence of cavitation on tumor immune microenvironment.

[Results]

1. The cell viability in 3 MHz group (37.97 ± 3.51%) was significantly lower than that in 4 MHz group (P<0.001) and 5 MHz group (P<0.001) and the cell viability was significantly lower when MI was 0.6 (29.05 ± 5.33%) than MI was 0.2 (P<0.001) and 0.4 (P=0.001). When RM-1 cells were treated with US (3 MHz and MI of 0.6) +MB+PTX, the cell viability was lower than cells treated with PTX alone (33.35 ± 8.23% vs 70.42 ± 8.72%, P<0.001) and the cellular apoptosis rate was significantly increased (14.46 ± 0.22% vs 6.63 ± 0.93%, P<0.001). After treated with US+MB, the fluorescence signal positive cell rate was higher than control group (15.79 ± 0.93% vs 2.37 ± 0.72%, P<0.001), which means that US-mediated MB cavitation can increase the membrane permeability.

2. The orthotopic mouse model was established successfully. In US+MB+PTX group, the tumor volume was statistically smaller than that in PTX group (166 ± 34 mm3 vs 249 ± 18 mm3, P=0.005), and the mean survival was longer than that in PTX group (16.20 ± 1.99 d vs 14.24 ± 2.77 d, P=0.031). Both tumor size (481 ± 96 mm3 vs 444 ± 145 mm3, P=0.687) and mean survival (11.54 ± 3.30 d vs 12.25 ± 2.93 d, P=0.507) were similar between US+MB group and control group. The proportion of CTLA4+ cells and PD-1+/CTLA4+ in CD8+ T cells were both lower in the US+MB group than that in the control group (P=0.017 and P=0.032). However, in the PTX+US+MB group, PD-1 and CTLA4 expression on CD8+ T cells were slightly higher than that in the PTX group, although the difference was not statistically significant.

[Conclusion]

US-mediated MB cavitation can enhance the efficacy of chemotherapy for treatment of prostate cancer by increasing membrane permeability of prostate cancer cells so that increasing the local concentration of chemotherapeutic agents. Cavitation alone can downregulate the expression of PD-1 and CTLA-4 on the surface of CD8+ T cells in the tumor microenvironment, however, the cavitation has a tendency to upregulate the expression of PD-1 and CTLA4 on the surface of CD8+ T cells in the presence of chemotherapy.

论文目录:
第一章 文献综述 1
1.1前言 1
1.2前列腺癌临床研究进展 1
1.2.1 前列腺癌术后复发和化疗疗效的预测 1
1.2.2 前列腺癌化疗临床进展 3
1.3 前列腺癌化疗的毒性反应 5
1.4 血-前列腺屏障与前列腺癌化疗 6
1.5 前列腺癌化疗增敏的研究进展 8
1.5.1 纳米技术 8
1.5.2 化学-光热协同治疗 9
1.5.3 磁驱动药物输送装置 11
1.5.4 超声空化增敏前列腺癌化疗 12
1.6 前列腺癌免疫研究进展 13
1.7 总结与展望 15
第二章 超声介导的微泡空化效应对RM-1细胞的化疗增敏研究 17
2.1 引言 17
2.2 实验器材和试剂材料 18
2.2.1 主要仪器设备及耗材 18
2.2.2 主要试剂和药品 20
2.2.3 细胞系 21
2.2.4 主要溶液及配制 21
2.3 实验方法 21
2.3.1 细胞培养 21
2.3.2 CCK-8法细胞活力检测 23
2.3.3 Annexin V/7-AAD 细胞凋亡检测 23
2.3.4 PTX抑制RM-1细胞活力的浓度梯度实验 24
2.3.5超声介导的微泡空化效应对RM-1细胞化疗增敏的最优频率探索 24
2.3.6超声介导的微泡空化效应对RM-1细胞化疗增敏的最优机械指数探索 25
2.3.7 超声介导的微泡空化效应增敏PTX抑制RM-1细胞活力实验 26
2.3.8 超声介导的微泡空化效应对PTX诱导的RM-1细胞凋亡的增敏研究 26
2.3.9 超声介导的微泡空化效应对RM-1细胞通透性的影响 27
2.3.10 超声介导的微泡空化效应对RM-1细胞活力的影响 28
2.3.11 超声介导的微泡空化效应对RM-1细胞凋亡的影响 28
2.4 统计学方法 28
2.5 结果 29
2.5.1 不同浓度PTX对RM-1细胞活力的影响 29
2.5.2超声介导的微泡空化效应对RM-1细胞化疗增敏的最适频率及机械指数 30
2.5.3 超声介导的微泡空化效应对RM-1细胞的化疗增敏效果 31
2.5.4 超声介导的微泡空化效应对RM-1细胞的通透性的影响 33
2.5.5 超声介导的微泡空化效应对RM-1细胞的活力和凋亡的影响 35
2.6 讨论 37
2.7 小结 40
第三章 改良小鼠前列腺癌原位移植瘤模型构建及空化效应增敏小鼠前列腺癌化疗和免疫调节初步探索 41
3.1 引言 41
3.2 实验器材和试剂材料 42
3.2.1 主要仪器设备及耗材 42
3.2.2 主要试剂和药品 44
3.2.3 实验动物和细胞 45
3.2.4 主要溶液及配制 45
3.3 实验方法 46
3.3.1 小鼠前列腺癌原位荷瘤模型的构建 46
3.3.2 小鼠前列腺癌原位模型的验证 47
3.3.3 组织病理检测 47
3.3.4 超声介导的微泡空化效应对小鼠前列腺癌化疗增敏实验 49
3.3.5 超声介导的微泡空化效应对小鼠前列腺癌的肿瘤免疫调节研究 50
3.4 统计学方法 51
3.5 结果 52
3.5.1 改良小鼠前列腺癌原位移植瘤模型的构建 52
3.5.2 超声介导的微泡空化效应对小鼠前列腺癌的化疗增敏效果 57
3.5.3 超声介导的微泡空化效应对小鼠前列腺癌的肿瘤免疫调节 60
3.6 讨论 62
3.7 小结 68
第四章 结论与展望 69
4.1 研究结论 69
4.2 创新点 69
4.3 不足之处 70
4.4 展望 70
参考文献 71
致谢 83
北京大学学位论文原创性声明和使用授权说明 85
学位论文答辩委员会名单 87
个人简历、在学期间发表的学术论文与研究成果 88
参考文献:

[1] Siegel R L, Miller K D, Fuchs H E, et al. Cancer Statistics, 2021. CA Cancer J Clin, 2021, 71(1):7-33.

[2] Stamey T A, Kabalin J N, Mcneal J E, et al. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. J Urol, 1989, 141(5):1076-1083.

[3] Cookson M S, Aus G, Burnett A L, et al. Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate Guidelines for Localized Prostate Cancer Update Panel report and recommendations for a standard in the reporting of surgical outcomes. J Urol, 2007, 177(2):540-545.

[4] Stephenson A J, Scardino P T, Eastham J A, et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol, 2005, 23(28):7005-7012.

[5] Walz J, Chun F K H, Klein E A, et al. Nomogram Predicting the Probability of Early Recurrence After Radical Prostatectomy for Prostate Cancer. The Journal of Urology, 2009, 181(2):601-608.

[6] Pompe R S, Bandini M, Preisser F, et al. Contemporary approach to predict early biochemical recurrence after radical prostatectomy: update of the Walz nomogram. Prostate Cancer Prostatic Dis, 2018, 21(3):386-393.

[7] Cooperberg M R, Pasta D J, Elkin E P, et al. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol, 2005, 173(6):1938-1942.

[8] Cooperberg M R, Hilton J F, Carroll P R. The CAPRA-S score: A straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer-Am Cancer Soc, 2011, 117(22):5039-5046.

[9] Xia H Z, Bi H, Yan Y, et al. A novel nomogram provides improved accuracy for predicting biochemical recurrence after radical prostatectomy. Chin Med J (Engl), 2021, In press.

[10] Rajan P, Hagman A, Sooriakumaran P, et al. Oncologic Outcomes After Robot-assisted Radical Prostatectomy: A Large European Single-centre Cohort with Median 10-Year Follow-up. Eur Urol Focus, 2018, 4(3):351-359.

[11] Diaz M, Peabody J O, Kapoor V, et al. Oncologic outcomes at 10 years following robotic radical prostatectomy. Eur Urol, 2015, 67(6):1168-1176.

[12] Armstrong A J, Tannock I F, Wit R D, et al. The development of risk groups in men with metastatic castration-resistant prostate cancer based on risk factors for PSA decline and survival. Eur J Cancer, 2010, 46(3):517-525.

[13] Miyake H, Sakai I, Terakawa T, et al. Oncological outcome of docetaxel-based chemotherapy for Japanese men with metastatic castration-resistant prostate cancer. Urol Oncol, 2013, 31(6):733-738.

[14] Shiota M, Yokomizo A, Adachi T, et al. The oncological outcomes and risk stratification in docetaxel chemotherapy for castration-resistant prostate cancer. Jpn J Clin Oncol, 2014, 44(9):860-867.

[15] Sweeney C J, Chen Y H, Carducci M, et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N Engl J Med, 2015, 373(8):737-746.

[16] Kyriakopoulos C E, Chen Y H, Carducci M A, et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J Clin Oncol, 2018, 36(11):1080-1087.

[17] Clarke N W, Ali A, Ingleby F C, et al. Addition of docetaxel to hormonal therapy in low- and high-burden metastatic hormone sensitive prostate cancer: long-term survival results from the STAMPEDE trial. Ann Oncol, 2019, 30(12):1992-2003.

[18] 中华医学会泌尿外科分会, 中国前列腺癌联盟. 转移性前列腺癌化疗中国专家共识(2019版). 中华泌尿外科杂志, 2019(10):721-722.

[19] Fizazi K, Faivre L, Lesaunier F, et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol, 2015, 16(7):787-794.

[20] Vale C L, Burdett S, Rydzewska L, et al. Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol, 2016, 17(2):243-256.

[21] Ahlgren G M, Flodgren P, Tammela T, et al. Docetaxel Versus Surveillance After Radical Prostatectomy for High-risk Prostate Cancer: Results from the Prospective Randomised, Open-label Phase 3 Scandinavian Prostate Cancer Group 12 Trial. Eur Urol, 2018, 73(6):870-876.

[22] Lin D W, Shih M C, Aronson W, et al. Veterans Affairs Cooperative Studies Program Study #553: Chemotherapy After Prostatectomy for High-risk Prostate Carcinoma: A Phase III Randomized Study. Eur Urol, 2020, 77(5):563-572.

[23] 王嘉毅, 薛蔚. 前列腺癌新辅助治疗研究进展. 中华泌尿外科杂志, 2020, 41(6):477-480.

[24] 王兴新. 前列腺癌新辅助治疗研究进展. 现代医药卫生, 2019, 35(16):2482-2486.

[25] Pignot G, Maillet D, Gross E, et al. Systemic treatments for high-risk localized prostate cancer. Nat Rev Urol, 2018, 15(8):498-510.

[26] Dreicer R, Magi-Galluzzi C, Zhou M, et al. Phase II trial of neoadjuvant docetaxel before radical prostatectomy for locally advanced prostate cancer. Urology, 2004, 63(6):1138-1142.

[27] Febbo P G, Richie J P, George D J, et al. Neoadjuvant docetaxel before radical prostatectomy in patients with high-risk localized prostate cancer. Clin Cancer Res, 2005, 11(14):5233-5240.

[28] Nosov A, Reva S, Petrov S, et al. Neoadjuvant Chemotherapy Using Reduced-Dose Docetaxel Followed by Radical Prostatectomy for Patients With Intermediate and High-Risk Prostate Cancer: A Single-Center Study. Prostate, 2016, 76(15):1345-1352.

[29] Pan J, Chi C, Qian H, et al. Neoadjuvant chemohormonal therapy combined with radical prostatectomy and extended PLND for very high risk locally advanced prostate cancer: A retrospective comparative study. Urol Oncol, 2019, 37(12):991-998.

[30] Narita S, Nara T, Kanda S, et al. Radical Prostatectomy With and Without Neoadjuvant Chemohormonal Pretreatment for High-Risk Localized Prostate Cancer: A Comparative Propensity Score Matched Analysis. Clin Genitourin Cancer, 2019, 17(1):e113-e122.

[31] Tannock I F, de Wit R, Berry W R, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med, 2004, 351(15):1502-1512.

[32] Crawford J, Becker P S, Armitage J O, et al. Myeloid Growth Factors, Version 2.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw, 2017, 15(12):1520-1541.

[33] Bowles D W, Flaig T W. Mitoxantrone-associated acute myelogenous leukemia in a patient with high-risk adenocarcinoma of the prostate: a case report and brief review. Cancer Invest, 2006, 24(5):517-520.

[34] Flaig T W, Tangen C M, Hussain M H, et al. Randomization reveals unexpected acute leukemias in Southwest Oncology Group prostate cancer trial. J Clin Oncol, 2008, 26(9):1532-1536.

[35] Hussain M, Tangen C M, Thompson I J, et al. Phase III Intergroup Trial of Adjuvant Androgen Deprivation With or Without Mitoxantrone Plus Prednisone in Patients With High-Risk Prostate Cancer After Radical Prostatectomy: SWOG S9921. J Clin Oncol, 2018, 36(15):1498-1504.

[36] Rosenthal S A, Bae K, Pienta K J, et al. Phase III multi-institutional trial of adjuvant chemotherapy with paclitaxel, estramustine, and oral etoposide combined with long-term androgen suppression therapy and radiotherapy versus long-term androgen suppression plus radiotherapy alone for high-risk prostate cancer: preliminary toxicity analysis of RTOG 99-02. Int J Radiat Oncol Biol Phys, 2009, 73(3):672-678.

[37] Kushnir I, Mallick R, Ong M, et al. Docetaxel dose-intensity effect on overall survival in patients with metastatic castrate-sensitive prostate cancer. Cancer Chemother Pharmacol, 2020, 85(5):863-868.

[38] James N D, Sydes M R, Clarke N W, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet, 2016, 387(10024):1163-1177.

[39] Jain R K. Barriers to drug delivery in solid tumors. Sci Am, 1994, 271(1):58-65.

[40] Jang S H, Wientjes M G, Lu D, et al. Drug delivery and transport to solid tumors. Pharm Res, 2003, 20(9):1337-1350.

[41] Kalyane D, Raval N, Maheshwari R, et al. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C Mater Biol Appl, 2019, 98:1252-1276.

[42] Sriraman S K, Aryasomayajula B, Torchilin V P. Barriers to drug delivery in solid tumors. Tissue Barriers, 2014, 2:e29528.

[43] Fulmer B R, Turner T T. A blood-prostate barrier restricts cell and molecular movement across the rat ventral prostate epithelium. J Urol, 2000, 163(5):1591-1594.

[44] Lang M D, Nickel J C, Olson M E, et al. Rat model of experimentally induced abacterial prostatitis. Prostate, 2000, 45(3):201-206.

[45] 马文强, 王养民, 李卫平. 血-前列腺屏障的假说及其对前列腺炎研究的意义: 第十五届全国泌尿外科学术会议[Z]. 中国云南昆明: 20081

[46] 崔栋, 尚永刚, 韩广玮, 等. 大鼠前列腺上皮细胞体外培养及其屏障功能的初步研究. 中华男科学杂志, 2016, 22(02):133-137.

[47] 崔栋, 尚永刚, 韩广玮, 等. 前列腺毛细血管内皮细胞屏障功能研究. 第三军医大学学报, 2016, 38(04):385-389.

[48] Buckley A, Turner J R. Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harb Perspect Biol, 2018, 10(1).

[49] Berndt P, Winkler L, Cording J, et al. Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci, 2019, 76(10):1987-2002.

[50] Dokladny K, Zuhl M N, Moseley P L. Intestinal epithelial barrier function and tight junction proteins with heat and exercise. J Appl Physiol (1985), 2016, 120(6):692-701.

[51] Naylor A, Hopkins A, Hudson N, et al. Tight Junctions of the Outer Blood Retina Barrier. Int J Mol Sci, 2019, 21(1).

[52] Mruk D D, Cheng C Y. The Mammalian Blood-Testis Barrier: Its Biology and Regulation. Endocr Rev, 2015, 36(5):564-591.

[53] van der Helm M W, Odijk M, Frimat J P, et al. Direct quantification of transendothelial electrical resistance in organs-on-chips. Biosens Bioelectron, 2016, 85:924-929.

[54] Shang Y, Dong X, Han G, et al. The Roles of Tight Junctions and Claudin-1 in the Microbubble-Mediated Ultrasound-Induced Enhancement of Drug Concentrations in Rat Prostate. J Membr Biol, 2015, 248(6):1167-1173.

[55] Gleiter H. Nanostructured materials: Basic concepts and microstructure. Acta Mater, 2000, 48(1):1-29.

[56] Alexis F, Pridgen E, Molnar L K, et al. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm, 2008, 5(4):505-515.

[57] Li M, Du C, Guo N, et al. Composition design and medical application of liposomes. Eur J Med Chem, 2019, 164:640-653.

[58] Zhang L, Chan J M, Gu F X, et al. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform. Acs Nano, 2008, 2(8):1696-1702.

[59] Needham D, Anyarambhatla G, Kong G, et al. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res, 2000, 60(5):1197-1201.

[60] Ranjan A, Benjamin C J, Negussie A H, et al. Biodistribution and Efficacy of Low Temperature-Sensitive Liposome Encapsulated Docetaxel Combined with Mild Hyperthermia in a Mouse Model of Prostate Cancer. Pharm Res, 2016, 33(10):2459-2469.

[61] Cornelio D B, Roesler R, Schwartsmann G. Gastrin-releasing peptide receptor as a molecular target in experimental anticancer therapy. Ann Oncol, 2007, 18(9):1457-1466.

[62] Zhang W, Song Y, Eldi P, et al. Targeting prostate cancer cells with hybrid elastin-like polypeptide/liposome nanoparticles. Int J Nanomedicine, 2018, 13:293-305.

[63] 黄星华, 吴上超, 陈浩栋, 等. 多功能纳米载体输送疏水性化疗药物抗前列腺癌细胞作用的研究. 黑龙江医药, 2020, 33(4):735-738.

[64] Leach J C, Wang A, Ye K, et al. A RNA-DNA Hybrid Aptamer for Nanoparticle-Based Prostate Tumor Targeted Drug Delivery. Int J Mol Sci, 2016, 17(3):380.

[65] Aydin O, Youssef I, Yuksel D Y, et al. Formulation of Acid-Sensitive Micelles for Delivery of Cabazitaxel into Prostate Cancer Cells. Mol Pharm, 2016, 13(4):1413-1429.

[66] Ghaznavi H, Hosseini-Nami S, Kamrava S K, et al. Folic acid conjugated PEG coated gold-iron oxide core-shell nanocomplex as a potential agent for targeted photothermal therapy of cancer. Artif Cells Nanomed Biotechnol, 2018, 46(8):1594-1604.

[67] Zhang Z, Wang J, Chen C. Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater, 2013, 25(28):3869-3880.

[68] Liu B, Li C, Cheng Z, et al. Functional nanomaterials for near-infrared-triggered cancer therapy. Biomater Sci, 2016, 4(6):890-909.

[69] Zhang W, Guo Z, Huang D, et al. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials, 2011, 32(33):8555-8561.

[70] Sreeharsha N, Maheshwari R, Al-Dhubiab B E, et al. Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy. Int J Nanomedicine, 2019, 14:7419-7429.

[71] Qiang L, Cai Z, Jiang W, et al. A novel macrophage-mediated biomimetic delivery system with NIR-triggered release for prostate cancer therapy. J Nanobiotechnol, 2019, 17(1):83.

[72] Zhang D, Qin X, Wu T, et al. Extracellular vesicles based self-grown gold nanopopcorn for combinatorial chemo-photothermal therapy. Biomaterials, 2019, 197:220-228.

[73] Bucharskaya A, Maslyakova G, Terentyuk G, et al. Towards Effective Photothermal/Photodynamic Treatment Using Plasmonic Gold Nanoparticles. Int J Mol Sci, 2016, 17(8).

[74] Wang Q, Zhang X, Sun Y, et al. Gold-caged copolymer nanoparticles as multimodal synergistic photodynamic/photothermal/chemotherapy platform against lethality androgen-resistant prostate cancer. Biomaterials, 2019, 212:73-86.

[75] Tan H, Hou N, Liu Y, et al. CD133 antibody targeted delivery of gold nanostars loading IR820 and docetaxel for multimodal imaging and near-infrared photodynamic/photothermal/chemotherapy against castration resistant prostate cancer. Nanomedicine-Uk, 2020, 27:102192.

[76] Zhang C, Zhao X, Guo H. Synergic highly effective photothermal-chemotherapy with platinum prodrug linked melanin-like nanoparticles. Artif Cells Nanomed Biotechnol, 2018, 46(sup2):356-363.

[77] Gao L, Teng R, Zhang S, et al. Zinc Ion-Stabilized Aptamer-Targeted Black Phosphorus Nanosheets for Enhanced Photothermal/Chemotherapy Against Prostate Cancer. Front Bioeng Biotechnol, 2020, 8:769.

[78] Wientjes M G, Zheng J H, Hu L, et al. Intraprostatic chemotherapy: distribution and transport mechanisms. Clin Cancer Res, 2005, 11(11):4204-4211.

[79] Villarruel M L, Scilletta N A, Bellino M G, et al. Recent Advances in Micro-Electro-Mechanical Devices for Controlled Drug Release Applications. Front Bioeng Biotechnol, 2020, 8:827.

[80] Zachkani P, Jackson J K, Pirmoradi F N, et al. A cylindrical magnetically-actuated drug delivery device proposed for minimally invasive treatment of prostate cancer. Rsc Adv, 2015, 5(119):98087-98096.

[81] Struss W J, Tan Z, Zachkani P, et al. Magnetically-actuated drug delivery device (MADDD) for minimally invasive treatment of prostate cancer: An in vivo animal pilot study. Prostate, 2017, 77(13):1356-1365.

[82] 钟渝, 刘政. 超声空化效应在治疗领域中的研究进展. 临床超声医学杂志, 2016(04):256-258.

[83] Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release, 2006, 114(1):89-99.

[84] Kobus T, Vykhodtseva N, Pilatou M, et al. Safety Validation of Repeated Blood-Brain Barrier Disruption Using Focused Ultrasound. Ultrasound Med Biol, 2016, 42(2):481-492.

[85] Park E J, Zhang Y Z, Vykhodtseva N, et al. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release, 2012, 163(3):277-284.

[86] Mcdannold N, Arvanitis C D, Vykhodtseva N, et al. Temporary disruption of the blood-brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques. Cancer Res, 2012, 72(14):3652-3663.

[87] Stride E P, Coussios C C. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc Inst Mech Eng H, 2010, 224(2):171-191.

[88] 陈江川, 刘永亮, 刘政, 等. 低功率超声辐照微泡造影剂对大鼠前列腺内伊文思蓝浓度的影响. 中国医学影像学杂志, 2014, 22(1):4-6, 11.

[89] Wang Y, Bai W K, Shen E, et al. Sonoporation by low-frequency and low-power ultrasound enhances chemotherapeutic efficacy in prostate cancer cells in vitro. Oncol Lett, 2013, 6(2):495-498.

[90] Fan X, Wang L, Guo Y, et al. Inhibition of prostate cancer growth using doxorubicin assisted by ultrasound-targeted nanobubble destruction. Int J Nanomedicine, 2016, 11:3585-3596.

[91] van Wamel A, Sontum P C, Healey A, et al. Acoustic Cluster Therapy (ACT) enhances the therapeutic efficacy of paclitaxel and Abraxane(R) for treatment of human prostate adenocarcinoma in mice. J Control Release, 2016, 236:15-21.

[92] Yang Y, Bai W, Chen Y, et al. Low-frequency ultrasound-mediated microvessel disruption combined with docetaxel to treat prostate carcinoma xenografts in nude mice: A novel type of chemoembolization. Oncol Lett, 2016, 12(2):1011-1018.

[93] van Rooij T, Daeichin V, Skachkov I, et al. Targeted ultrasound contrast agents for ultrasound molecular imaging and therapy. Int J Hyperthermia, 2015, 31(2):90-106.

[94] Bae Y J, Yoon Y I, Yoon T J, et al. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model. Korean J Radiol, 2016, 17(4):497-508.

[95] Dimcevski G, Kotopoulis S, Bjanes T, et al. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release, 2016, 243:172-181.

[96] 朱学进, 钟惟德. 前列腺癌肿瘤免疫治疗基础研究的现状和展望. 中华实验外科杂志, 2019, 36(12):2130-2136.

[97] Jahnisch H, Fussel S, Kiessling A, et al. Dendritic cell-based immunotherapy for prostate cancer. Clin Dev Immunol, 2010, 2010:517493.

[98] Troy A, Davidson P, Atkinson C, et al. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J Urol, 1998, 160(1):214-219.

[99] Aalamian M, Pirtskhalaishvili G, Nunez A, et al. Human prostate cancer regulates generation and maturation of monocyte-derived dendritic cells. Prostate, 2001, 46(1):68-75.

[100] Westdorp H, Creemers J, van Oort I M, et al. Blood-derived dendritic cell vaccinations induce immune responses that correlate with clinical outcome in patients with chemo-naive castration-resistant prostate cancer. J Immunother Cancer, 2019, 7(1):302.

[101] Prokhnevska N, Emerson D A, Kissick H T, et al. Immunological Complexity of the Prostate Cancer Microenvironment Influences the Response to Immunotherapy. Adv Exp Med Biol, 2019, 1210:121-147.

[102] Yang Y, Attwood K, Bshara W, et al. High intratumoral CD8(+) T-cell infiltration is associated with improved survival in prostate cancer patients undergoing radical prostatectomy. Prostate, 2021, 81(1):20-28.

[103] Kumano Y, Hasegawa Y, Kawahara T, et al. Pretreatment Neutrophil to Lymphocyte Ratio (NLR) Predicts Prognosis for Castration Resistant Prostate Cancer Patients Underwent Enzalutamide. Biomed Res Int, 2019, 2019:9450838.

[104] Ferro M, Musi G, Serino A, et al. Neutrophil, Platelets, and Eosinophil to Lymphocyte Ratios Predict Gleason Score Upgrading in Low-Risk Prostate Cancer Patients. Urol Int, 2019, 102(1):43-50.

[105] Claps M, Mennitto A, Guadalupi V, et al. Immune-checkpoint inhibitors and metastatic prostate cancer therapy: Learning by making mistakes. Cancer Treat Rev, 2020, 88:102057.

[106] Rowshanravan B, Halliday N, Sansom D M. CTLA-4: a moving target in immunotherapy. Blood, 2018, 131(1):58-67.

[107] Kwon E D, Drake C G, Scher H I, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol, 2014, 15(7):700-712.

[108] Fizazi K, Drake C G, Beer T M, et al. Final Analysis of the Ipilimumab Versus Placebo Following Radiotherapy Phase III Trial in Postdocetaxel Metastatic Castration-resistant Prostate Cancer Identifies an Excess of Long-term Survivors. Eur Urol, 2020, 78(6):822-830.

[109] Beer T M, Kwon E D, Drake C G, et al. Randomized, Double-Blind, Phase III Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients With Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. J Clin Oncol, 2017, 35(1):40-47.

[110] Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res, 2020, 10(3):727-742.

[111] Topalian S L, Hodi F S, Brahmer J R, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med, 2012, 366(26):2443-2454.

[112] Graff J N, Alumkal J J, Drake C G, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget, 2016, 7(33):52810-52817.

[113] Sharma P, Pachynski R K, Narayan V, et al. Nivolumab Plus Ipilimumab for Metastatic Castration-Resistant Prostate Cancer: Preliminary Analysis of Patients in the CheckMate 650 Trial. Cancer Cell, 2020, 38(4):489-499.

[114] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018, 68(6):394-424.

[115] Bill-Axelson A, Holmberg L, Garmo H, et al. Radical Prostatectomy or Watchful Waiting in Prostate Cancer - 29-Year Follow-up. N Engl J Med, 2018, 379(24):2319-2329.

[116] Wilt T J, Jones K M, Barry M J, et al. Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N Engl J Med, 2017, 377(2):132-142.

[117] Michalski J M, Moughan J, Purdy J, et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. Jama Oncol, 2018, 4(6):e180039.

[118] Hamdy F C, Donovan J L, Lane J A, et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med, 2016, 375(15):1415-1424.

[119] Sartor O, de Bono J S. Metastatic Prostate Cancer. N Engl J Med, 2018, 378(7):645-657.

[120] Tian Y, Liu Z, Tan H, et al. New Aspects of Ultrasound-Mediated Targeted Delivery and Therapy for Cancer. Int J Nanomedicine, 2020, 15:401-418.

[121] Du M, Chen Z, Chen Y, et al. Ultrasound-Targeted Delivery Technology: A Novel Strategy for Tumor- Targeted Therapy. Curr Drug Targets, 2019, 20(2):220-231.

[122] 张娟娟, 陈英红, 林旭红. 超声靶向微泡破坏联合脂质体介导pSilencer 3.1-SATB1基因转染前列腺癌细胞效果观察. 山东医药, 2017, 57(30):22-25.

[123] Bao S, Thrall B D, Miller D L. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol, 1997, 23(6):953-959.

[124] Fan C H, Ting C Y, Chang Y C, et al. Drug-loaded bubbles with matched focused ultrasound excitation for concurrent blood-brain barrier opening and brain-tumor drug delivery. Acta Biomater, 2015, 15:89-101.

[125] 尚永刚, 韩广玮, 董小小, 等. 低频超声联合造影剂微泡对前列腺组织中头孢呋辛浓度的影响. 局解手术学杂志, 2015, 24(06):602-605.

[126] Lowrance W T, Murad M H, Oh W K, et al. Castration-Resistant Prostate Cancer: AUA Guideline Amendment 2018. J Urol, 2018, 200(6):1264-1272.

[127] Bell K J, Del M C, Wright G, et al. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer, 2015, 137(7):1749-1757.

[128] Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. J Physiol, 2016, 594(8):2061-2073.

[129] Rix A, Lederle W, Theek B, et al. Advanced Ultrasound Technologies for Diagnosis and Therapy. J Nucl Med, 2018, 59(5):740-746.

[130] Sennoga C A, Kanbar E, Auboire L, et al. Microbubble-mediated ultrasound drug-delivery and therapeutic monitoring. Expert Opin Drug Deliv, 2017, 14(9):1031-1043.

[131] 高宏伟. 超声微泡造影在前列腺癌诊治中的研究进展. 天津医科大学学报, 2018, 24(2):177-179.

[132] Qi T Y, Chen Y Q, Jiang J, et al. Contrast-enhanced transrectal ultrasonography: measurement of prostate cancer tumor size and correlation with radical prostatectomy specimens. Int J Urol, 2013, 20(11):1085-1091.

[133] Chong W K, Papadopoulou V, Dayton P A. Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (NY), 2018, 43(4):762-772.

[134] Sorace A G, Warram J M, Umphrey H, et al. Microbubble-mediated ultrasonic techniques for improved chemotherapeutic delivery in cancer. J Drug Target, 2012, 20(1):43-54.

[135] Yang C H, Horwitz S B. Taxol((R)): The First Microtubule Stabilizing Agent. Int J Mol Sci, 2017, 18(8).

[136] Zhang J Z, Saggar J K, Zhou Z L, et al. Different effects of sonoporation on cell morphology and viability. Bosn J Basic Med Sci, 2012, 12(2):64-68.

[137] Jackson J K, Pirmoradi F N, Wan C P, et al. Increased accumulation of paclitaxel and doxorubicin in proliferating capillary cells and prostate cancer cells following ultrasound exposure. Ultrasonics, 2011, 51(8):932-939.

[138] Maeshige N, Kitagawa K, Yamasaki S, et al. Can ultrasound irradiation be a therapeutic option for prostate cancer? Prostate, 2020, 80(12):986-992.

[139] 徐卫平, 申锷, 林艳端, 等. 不同辐照模式低频超声对前列腺癌DU145细胞的影响. 中华临床医师杂志(电子版), 2013, 7(17):87-89.

[140] Ward M, Wu J, Chiu J F. Experimental study of the effects of Optison concentration on sonoporation in vitro. Ultrasound Med Biol, 2000, 26(7):1169-1175.

[141] 武雨琦, 王祥卫. 低频超声联合微泡造影剂通过激活内质网应激逆转前列腺癌紫杉醇耐药. 第三军医大学学报, 2018, 40(08):673-678.

[142] Zhang W, Fan W, Rachagani S, et al. Comparative Study of Subcutaneous and Orthotopic Mouse Models of Prostate Cancer: Vascular Perfusion, Vasculature Density, Hypoxic Burden and BB2r-Targeting Efficacy. Sci Rep, 2019, 9(1):11117.

[143] Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev, 1989, 8(2):98-101.

[144] Grabowska M M, Degraff D J, Yu X, et al. Mouse models of prostate cancer: picking the best model for the question. Cancer Metastasis Rev, 2014, 33(2-3):377-397.

[145] Eggen S, Fagerland S M, Morch Y, et al. Ultrasound-enhanced drug delivery in prostate cancer xenografts by nanoparticles stabilizing microbubbles. J Control Release, 2014, 187:39-49.

[146] Yang Y, Bai W, Chen Y, et al. Low-frequency and low-intensity ultrasound-mediated microvessel disruption enhance the effects of radiofrequency ablation on prostate cancer xenografts in nude mice. Mol Med Rep, 2015, 12(5):7517-7525.

[147] Snipstad S, Morch Y, Sulheim E, et al. Sonopermeation Enhances Uptake and Therapeutic Effect of Free and Encapsulated Cabazitaxel. Ultrasound Med Biol, 2021.

[148] 赵文锋, 蔡建良, 饶晓松, 等. C57BL/6小鼠前列腺癌原位细胞移植动物模型的建立. 中华实验外科杂志, 2011, 28(1):142-144, 封3, 封4.

[149] Tuomela J M, Valta M P, Vaananen K, et al. Alendronate decreases orthotopic PC-3 prostate tumor growth and metastasis to prostate-draining lymph nodes in nude mice. Bmc Cancer, 2008, 8:81.

[150] Singh S, Pan C, Wood R, et al. Quantitative volumetric imaging of normal, neoplastic and hyperplastic mouse prostate using ultrasound. Bmc Urol, 2015, 15:97.

[151] Lardizabal J, Ding J, Delwar Z, et al. A TRAMP-derived orthotopic prostate syngeneic (TOPS) cancer model for investigating anti-tumor treatments. Prostate, 2018, 78(6):457-468.

[152] Bobek V, Hoffman R M, Kolostova K. Site-specific cytomorphology of disseminated PC-3 prostate cancer cells visualized in vivo with fluorescent proteins. Diagn Cytopathol, 2013, 41(5):413-417.

[153] 夏晴, 孙顺吉, 刘峰, 等. 一种新型原位前列腺癌种植小鼠模型的建立及其应用. 中国男科学杂志, 2017, 31(04):8-11.

[154] Baley P A, Yoshida K, Qian W, et al. Progression to androgen insensitivity in a novel in vitro mouse model for prostate cancer. J Steroid Biochem Mol Biol, 1995, 52(5):403-413.

[155] 赵文锋, 蔡建良, 那彦群. 小鼠前列腺癌原位移植动物模型的研究进展. 国际泌尿系统杂志, 2009, 29(6):751-755.

[156] Kleinman H K, Martin G R. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol, 2005, 15(5):378-386.

[157] Linder A, Larsson K, Welen K, et al. RGS2 is prognostic for development of castration resistance and cancer-specific survival in castration-resistant prostate cancer. Prostate, 2020, 80(11):799-810.

[158] Genevois C, Hocquelet A, Mazzocco C, et al. In Vivo Imaging of Prostate Cancer Tumors and Metastasis Using Non-Specific Fluorescent Nanoparticles in Mice. Int J Mol Sci, 2017, 18(12).

[159] Saar M, Korbel C, Jung V, et al. Experimental orthotopic prostate tumor in nude mice: techniques for local cell inoculation and three-dimensional ultrasound monitoring. Urol Oncol, 2012, 30(3):330-338.

[160] Li T, Liu G, Li J, et al. Mechanisms of prostate permeability triggered by microbubble-mediated acoustic cavitation. Cell Biochem Biophys, 2012, 64(2):147-153.

[161] Kundranda M N, Niu J. Albumin-bound paclitaxel in solid tumors: clinical development and future directions. Drug Des Devel Ther, 2015, 9:3767-3777.

[162] Sontum P, Kvale S, Healey A J, et al. Acoustic Cluster Therapy (ACT)--A novel concept for ultrasound mediated, targeted drug delivery. Int J Pharm, 2015, 495(2):1019-1027.

[163] Wamel A V, Healey A, Sontum P C, et al. Acoustic Cluster Therapy (ACT) - pre-clinical proof of principle for local drug delivery and enhanced uptake. J Control Release, 2016, 224:158-164.

[164] Wang Y, Hu B, Diao X, et al. Antitumor effect of microbubbles enhanced by low frequency ultrasound cavitation on prostate carcinoma xenografts in nude mice. Exp Ther Med, 2012, 3(2):187-191.

[165] 乔学研, 陈重, 益磋, 等. 诊断超声联合微泡对兔VX_2肿瘤的血流增强效应. 临床超声医学杂志, 2017, 19(04):217-221.

[166] Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5):646-674.

[167] Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer, 2006, 6(5):392-401.

[168] Kramer G, Steiner G E, Grobl M, et al. Response to sublethal heat treatment of prostatic tumor cells and of prostatic tumor infiltrating T-cells. Prostate, 2004, 58(2):109-120.

[169] Hou R, Xu Y, Lu Q, et al. Effect of low-frequency low-intensity ultrasound with microbubbles on prostate cancer hypoxia. Tumour Biol, 2017, 39(10):1393370389.

[170] Taube J M, Klein A, Brahmer J R, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res, 2014, 20(19):5064-5074.

分类号:

 R737.25    

馆藏位置:

 医临时馆    

开放日期:

 2021-07-05    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式