论文题名(中文): |
基于邻近标记的铜转运网络绘制与铜结合蛋白的发现
|
作者: |
李郑村晓
|
学号: |
1911110122
|
论文语种: |
chi
|
学科名称: |
理学 - 药学(可授医学、理学学位) - 化学生物学
|
学生类型: |
博士
|
学校: |
北京大学医学部
|
院系: |
药学院
|
专业: |
化学生物学
|
第一导师姓名: |
王晶
|
论文完成日期: |
2024-05-22
|
论文答辩日期: |
2024-05-22
|
论文题名(外文): |
The discovery of copper-binding proteins and copper transporting system by proximity labeling strategy
|
关键词(中文): |
铜结合蛋白 ; 邻近标记技术 ; 抗氧化蛋白1( ATOX1) ; 硫氧还蛋白还原酶1( TrxR1)
|
关键词(外文): |
copper-binding protein ; proximity labeling ; ATOX1 ; TrxR1
|
论文文摘(中文): |
︿
铜(Cu)作为人体的必需微量金属元素,对调控生命过程至关重要。铜作为细胞内关键蛋白酶的辅助因子,广泛参与了细胞内诸多生理生化过程,如线粒体氧化呼吸链、过氧化物清除、铜结合蛋白的生物合成、生物的休息-活动周期等。铜代谢的紊乱往往与铜死亡、DNA损伤、肿瘤免疫逃避、门克斯氏(Menkes)综合症、威尔逊氏(Wilson)病、神经退行性疾病等密切相关。
铜转运网络是铜生物学功能的基础,而铜结合蛋白是铜转运网络的重要组成成分,因此深入理解铜的生物学功能需要完整绘制铜转运网络,发现和验证更多含铜蛋白的功能和调控机制。然而,含铜蛋白的发现和鉴定目前仍然缺乏足够的方法,特别是如何通过蛋白质组学进行大规模含铜蛋白的发现具有极大的挑战性。近年来邻近标记技术逐渐成为研究生物大分子相互作用蛋白组的有力工具。APEX2邻近标记技术能以较高的时空分辨率来识别直接、弱或瞬时相互作用的蛋白质,已被广泛应用于细胞内复杂的蛋白质相互作用网络研究。但是,APEX2邻近标记技术中使用的过氧化氢(H2O2)可能影响细胞内对氧化敏感的蛋白质组的鉴定。TurboID邻近标记技术利用了无毒性的生物素作为底物,能够在不影响细胞生理状态的情况下实现邻近标记,目前已经越来越多的应用于蛋白质组学的研究。
本论文以铜伴侣蛋白抗氧化蛋白1(ATOX1)为诱饵,将ATOX1与邻近标记技术相融合的策略,通过有效捕获ATOX1邻近蛋白质,并绘制其相互作用网络,从中发现新的铜结合蛋白。我们首先对比了基于APEX2和TurboID的邻近标记蛋白质组,发现二者具有特定的氨基酸偏好性和结构域偏好性。为了提高准确性,我们将APEX2和TurboID这两种邻近标记技术捕获的共有蛋白质组作为高置信度的ATOX1邻近蛋白质网络,并通过GO分析和KEGG通路分析验证了ATOX1参与的已知生理功能和作用通路,说明两种邻近标记技术的综合运用能够准确地绘制ATOX1邻近蛋白质网络,为发现新的铜结合蛋白提供可靠的数据支撑。从ATOX1邻近蛋白质网络中,本研究发现和验证了一个之前未报道的全新铜结合蛋白硫氧还蛋白还原酶1(TrxR1)。体外实验结果表明铜可以结合在TrxR1的催化活性中心,从而抑制了TrxR1通过其C端氧化还原中心还原Trx1的过程,导致Trx1氧化态的增加。然而,铜的结合不会影响NADPH还原TrxR1的N端氧化还原中心的过程,也不会导致TrxR1的蛋白质二级结构、二聚化状态或热稳定性发生改变。硝基化作为调控蛋白质活性、定位、稳定性和相互作用的重要翻译后修饰,广泛参与到细胞的生理过程当中,而Trx1是调节蛋白质去硝基化的关键蛋白酶之一。本研究发现铜会进一步导致Trx1失去去硝基化的功能,最终引起细胞内蛋白质的S-亚硝基化(SNO)修饰水平的升高。
综上所述,本研究通过邻近标记蛋白质组学技术有效地绘制了全细胞铜伴侣蛋白ATOX1相互作用的邻近蛋白质网络,为发现新的铜结合蛋白提供了重要数据库资源,并拓展了对细胞内铜的生物学功能的认知。
﹀
|
文摘(外文): |
︿
Copper (Cu), as an essential trace metal in the body, is crucial for life. Copper serves as an indispensable protein cofactor and widely participates in various physiological and biochemical processes within the cell. These processes include mitochondrial oxidative phosphorylation, removal of peroxides, biosynthesis of copper-binding proteins, and the biological rest-activity cycle. Disruptions of copper metabolism are often closely associated with cuproptosis, DNA damage, tumor immune evasion, Menkes disease, Wilson's disease, and neurodegenerative diseases.
The copper transport network decides cellular copper biology, and copper-binding proteins are vital components of this network. Therefore, the mapping of copper trafficking networks and the discovery of copper-binding proteins is essential for a deeper understanding of copper biology. Identifying copper-binding proteins lacks an efficiently and accurately tool to confirm copper binding and its binding sites. Especially, large-scale discovery of copper-binding proteins at the proteome level is significant challenging. In recent years, proximity labeling techniques have gradually become powerful tools for studying the interactions between large biomolecules. The APEX2 proximity labeling technique can identify direct, weak, or transient protein interactions with high spatiotemporal resolution and has been widely applied in the study of complex protein interaction networks within cells. However, the use of hydrogen peroxide in the APEX2 proximity labeling technique may affect oxidation-sensitive proteins and pathways within the cell. On the other hand, the TurboID proximity labeling technique utilizes non-toxic biotin as a substrate, allowing for proximity labeling without affecting the physiological state of the cell, which has been widely applied for proteome research.
Here, this study integrates the copper chaperone protein antioxidant 1 (ATOX1) with proximity labeling techniques to capture the ATOX1-proximal protein network, aiming to discover new copper-binding proteins. We first compared the proximity-labeled proteomes based on APEX2 and TurboID, revealing their respective amino acid and domain preferences. To enhance the accuracy of the proximity-labeled proteome, the study further analyzed the overlap in the APEX2 and TurboID proteomes, regarded as the ATOX1-specific proximal network with high confidence. GO and KEGG analyses demonstrated that this network effectively recapitulated the known physiological functions and pathways related to ATOX1, confirming that the combination of both proximity labeling techniques can accurately depict the ATOX1-specific proximal protein network, providing crucial resource for the discovery of copper-binding proteins. From the network, we identified a novel copper-binding protein, thioredoxin reductase 1 (TrxR1). The results revealed that copper can bind to the catalytic center of TrxR1, inhibiting the reduction of Trx1 by TrxR1 through its C-terminal redox center and leading to an increase in the oxidized state of Trx1. However, copper binding does not affect the process of NADPH reducing the N-terminal redox center of TrxR1. or induce changes in the secondary structure, dimerization state, or thermal stability of TrxR1. Nitrosylation, a type of post-translation modification, regulates protein signaling, activities, and interactions. Given that Trx1 possesses denitrosylation activity, the results showed that copper decreased the denitrosylation activity of Trx1, ultimately leading to an elevation in the S-nitrosylation (SNO) modification level of intracellular proteins.
This research demonstrates that proximity labeling techniques can effectively depict the ATOX1-specific proximal protein network, serving as an important resource for discovering new copper-binding proteins. Additionally, the study expands our understanding on the cellular copper biology.
﹀
|
论文目录: |
︿
第一章 引言 1 1.1 生命中的铜 4 1.1.1 人体中铜的摄入与分布 4 1.1.2 小肠上皮细胞对铜的吸收 5 1.1.3 细胞内铜的转运 6 1.1.4 铜在细胞内的功能 8 1.1.5 铜紊乱相关的人体疾病 10 1.2 铜蛋白的发现方法 13 1.2.1 生物信息学在预测金属结合蛋白质中的应用 14 1.2.2 基于共进化的机器学习预测蛋白质中的金属结合蛋白 15 1.2.3 基于金属结合结构域预测蛋白质组中的金属蛋白 16 1.2.4 利用固定化金属离子亲和层析技术发现铜结合蛋白 18 1.2.5 利用酵母双杂交法发现铜结合蛋白质 19 1.3 邻近标记技术 21 1.3.1 基于APEX2的邻近标记技术 23 1.3.2 基于BioID的邻近标记技术 25 1.3.3 基于TurboID的邻近标记技术 26 1.4 本章小结与本研究课题 27 1.4.1 前期工作基础 28 1.4.2 本研究的立题依据 29 1.4.3 本研究的科学意义 29 第二章 材料与方法 31 2.1 实验材料 31 2.1.1 细胞系 31 2.1.2 实验材料 31 2.1.3 实验仪器 35 2.2 实验方法 36 2.2.1 细胞系的培养与保存 36 2.2.2 真核细胞表达质粒的构建 38 2.2.3 原核细胞表达质粒的构建 39 2.2.4 真核细胞的转染 41 2.2.5 聚丙烯酰胺凝胶电泳(SDS-PAGE) 42 2.2.6 蛋白质免疫印迹(Western blot) 42 2.2.7 电感耦合等离子体质谱(ICP-MS) 42 2.2.8 基于APEX2的邻近标记 43 2.2.9 基于TurboID的邻近标记 44 2.2.10 二甲基标记 45 2.2.11 蛋白质质谱鉴定与数据分析 45 2.2.12 蛋白质的原核系统表达与纯化 46 2.2.13 配体-金属电子转移(LMCT)吸收带的监测 47 2.2.14 微量热泳动(MST)实验 47 2.2.15 近紫外圆二色谱(Near-UV CD) 48 2.2.16 远紫外圆二色谱(Far-UV CD) 48 2.2.17 蛋白质结合铜的解离常数的测定 48 2.2.18 蛋白质与[Cu(BCA)2]3-的竞争实验 50 2.2.19 基于邻近标记的亲和下拉实验 50 2.2.20 免疫荧光共定位实验 51 2.2.21 蛋白质免疫共沉淀(co-IP)实验 51 2.2.22 表面等离子体共振(SPR)实验 52 2.2.23 铜传递的尺寸排阻色谱法(SEC)实验 53 2.2.24 原核表达与纯化的TrxR1酶活性的测定 53 2.2.25 真核细胞内TrxR酶活性的测定 54 2.2.26 实时荧光定量PCR(RT-qPCR) 54 2.2.27 非还原聚丙烯酰胺凝胶电泳(Non-reduced SDS-PAGE) 55 2.2.28 TrxR1辅因子含量的测定 55 2.2.29 差示扫描量热法分析(DSF)蛋白质稳定性 56 2.2.30 蛋白质热位移(Thermol shift)分析 56 2.2.31 停留光谱实验 56 2.2.32 Trx1氧化水平的表征 57 2.2.33 细胞内S-亚硝基化(SNO)修饰蛋白质的检测 58 2.2.34 基于CRISPR/Cas9的基因敲入(Knock-in) 59 2.2.35 基因敲入的纯合子细胞系的筛选与鉴定 59 2.2.36 基于基因敲入APEX2的邻近标记 60 第三章 基于邻近标记技术绘制ATOX1邻近蛋白质网络 61 3.1 本章引言与研究思路 61 3.1.1 铜伴侣蛋白ATOX1的结构特征 61 3.1.2 铜伴侣蛋白ATOX1的分子生物学功能 62 3.1.3 铜伴侣蛋白ATOX1的病理生理学功能 63 3.1.4 本章研究思路 64 3.2 实验结果与讨论 65 3.2.1 基于APEX2的邻近标记 65 3.2.2 基于TurboID的邻近标记 69 3.2.3 基于APEX2与TurboID的ATOX1邻近蛋白质组的比较 73 3.2.4 ATOX1邻近蛋白质网络的绘制 77 3.3 本章小结 79 第四章 硫氧还蛋白还原酶1(TrxR1)的发现与鉴定 81 4.1 本章引言与研究思路 81 4.2 实验结果与讨论 83 4.2.1硫氧还蛋白还原酶1(TrxR1)的发现 83 4.2.2 TrxR1结合铜离子的鉴定 86 4.2.3 TrxR1与铜离子的解离常数的测定 88 4.2.4 TrxR1的铜结合位点的确定 89 4.2.5 TrxR1与ATOX1的相互作用 90 4.2.6 TrxR1与ATOX1之间的铜传递 93 4.3 本章小结 95 第五章 铜对TrxR1/Trx1系统的调控 97 5.1 本章引言与研究思路 97 5.2 实验结果与讨论 100 5.2.1 铜抑制TrxR1UC的酶活性 100 5.2.2 铜抑制细胞内TrxR1的酶活性 103 5.2.3 铜对TrxR1蛋白质结构及其稳定性的影响 106 5.2.4 铜对TrxR1催化反应过程的影响 109 5.2.5 铜调控TrxR1/Trx1的功能 112 5.3 本章小结 116 第六章 基于基因敲入(Knock-in)技术的策略优化 118 6.1 策略优化的思路 118 6.2 实验结果与讨论 119 6.2.1 基于CRISPR/Cas9的APEX2敲入 119 6.2.2 基因敲入(Knock-in)细胞系的邻近标记 123 6.3 本章小结 128 第七章 结论及展望 129 参考文献 132 致谢 150 北京大学学位论文原创性声明和使用授权说明 152
﹀
|
参考文献: |
︿
[1] M. A. Zoroddu, J. Aaseth, G. Crisponi, S. Medici, M. Peana, V. M. Nurchi, The essential metals for humans: A brief overview. J Inorg Biochem, 2019, 195, 120-129. [2] W. Maret, The metals in the biological periodic system of the elements: Concepts and conjectures. Int J Mol Sci, 2016, 17. [3] C. Wang, R. Zhang, X. Wei, M. Lv, Z. Jiang, in Advances in immunology in china - part b, 2020, pp. 187-241. [4] A. Sigel, H. Sigel, R. K. Sigel, Interrelations between essential metal ions and human diseases, Vol. 13, Springer, 2013. [5] M. C. Linder, Ceruloplasmin and other copper binding components of blood plasma and their functions: An update. Metallomics, 2016, 8, 887-905. [6] W. Kaim, Bioinorganic chemistry: Inorganic elements in the chemistry of life. An introduction and guide, Vol. 210, 1995. [7] J. F. Da Silva, R. J. P. Williams, The biological chemistry of the elements : The inorganic chemistry of life, Oxford University Press, 2001. [8] M. Bodansky, The zinc and copper content of the human brain. Journal of Biological Chemistry, 1921, 48, 361-364. [9] P. C. Bull, G. R. Thomas, J. M. Rommens, J. R. Forbes, D. W. Cox, The wilson disease gene is a putative copper transporting p–type atpase similar to the menkes gene. Nature Genetics, 1993, 5, 327-337. [10] A. J. Glazebrook, Wilson's disease. Edinb Med J, 1945, 52, 83-87. [11] J. H. Menkes, M. Alter, G. K. Steigleder, D. R. Weakley, J. H. Sung, A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics, 1962, 29, 764-779. [12] D. M. Danks, P. E. Campbell, B. J. Stevens, V. Mayne, E. Cartwright, Menkes's kinky hair syndrome. An inherited defect in copper absorption with widespread effects. Pediatrics, 1972, 50, 188-201. [13] D. M. Danks, P. E. Campbell, J. Walker-Smith, B. J. Stevens, J. M. Gillespie, J. Blomfield, B. Turner, Menkes' kinky-hair syndrome. Lancet (London, England), 1972, 1, 1100-1102. [14] The radiochemistry of copper, The National Academies Press, Washington, DC, 1961. [15] M. E. Letelier, A. M. Lepe, M. Faúndez, J. Salazar, R. Marín, P. Aracena, H. Speisky, Possible mechanisms underlying copper-induced damage in biological membranes leading to cellular toxicity. Chemico-biological interactions, 2005, 151, 71-82. [16] D. H. Brown, W. E. Smith, Metal ions in biological systems. In: Suckling, c.J. (eds) enzyme chemistry, Springer, 1984. [17] H. Irving, R. J. P. Williams, Order of stability of metal complexes. Nature, 1948, 162, 746-747. [18] N. J. Robinson, D. R. Winge, Copper metallochaperones. Annual Review of Biochemistry, 2010, 79, 537-562. [19] J. F. Collins, Copper nutrition and biochemistry and human (patho)physiology. Adv Food Nutr Res, 2021, 96, 311-364. [20] S. Cherukuri, R. Potla, J. Sarkar, S. Nurko, Z. L. Harris, P. L. Fox, Unexpected role of ceruloplasmin in intestinal iron absorption. Cell metabolism, 2005, 2, 309-319. [21] J. Calvo, H. Jung, G. Meloni, Copper metallothioneins. IUBMB Life, 2017, 69, 236-245. [22] M. Harada, S. Sakisaka, K. Terada, R. Kimura, T. Kawaguchi, H. Koga, E. Taniguchi, K. Sasatomi, N. Miura, T. Suganuma, H. Fujita, K. Furuta, K. Tanikawa, T. Sugiyama, M. Sata, Role of atp7b in biliary copper excretion in a human hepatoma cell line and normal rat hepatocytes. Gastroenterology, 2000, 118, 921-928. [23] M. Knöpfel, M. Solioz, Characterization of a cytochrome b558 ferric/cupric reductase from rabbit duodenal brush border membranes. Biochemical and Biophysical Research Communications, 2002, 291, 220-225. [24] K. Kim, S. Mitra, G. Wu, V. Berka, J. Song, Y. Yu, S. Poget, D. N. Wang, A. L. Tsai, M. Zhou, Six-transmembrane epithelial antigen of prostate 1 (steap1) has a single b heme and is capable of reducing metal ion complexes and oxygen. Biochemistry, 2016, 55, 6673-6684. [25] R. S. Ohgami, D. R. Campagna, A. McDonald, M. D. Fleming, The steap proteins are metalloreductases. Blood, 2006, 108, 1388-1394. [26] S. Wyman, R. J. Simpson, A. T. McKie, P. A. Sharp, Dcytb (cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS letters, 2008, 582, 1901-1906. [27] Y. Nose, L. K. Wood, B.-E. Kim, J. R. Prohaska, R. S. Fry, J. W. Spears, D. J. Thiele, Ctr1 is an apical copper transporter in mammalian intestinal epithelial cells in vivo that is controlled at the level of protein stability. Journal of Biological Chemistry, 2010, 285, 32385-32392. [28] B. E. Kim, T. Nevitt, D. J. Thiele, Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol, 2008, 4, 176-185. [29] S. Gulec, J. F. Collins, Molecular mediators governing iron-copper interactions. Annual review of nutrition, 2014, 34, 95-116. [30] H. Pierson, H. Yang, S. Lutsenko, Copper transport and disease: What can we learn from organoids? Annual review of nutrition, 2019, 39, 75-94. [31] N. Reznik, A. D. Gallo, K. W. Rush, G. Javitt, Y. Fridmann-Sirkis, T. Ilani, N. A. Nairner, S. Fishilevich, D. Gokhman, K. N. Chacon, K. J. Franz, D. Fass, Intestinal mucin is a chaperone of multivalent copper. Cell, 2022, 185, 4206-4215 e4211. [32] B. A. Bowman, R. M. Russell, Present knowledge in nutrition, Vol. 1, 9 ed., International Life Sciences Institute, Washington, DC, 2006. [33] L. J. Harvey, J. R. Dainty, W. J. Hollands, V. J. Bull, J. H. Beattie, T. I. Venelinov, J. A. Hoogewerff, I. M. Davies, S. J. Fairweather-Tait, Use of mathematical modeling to study copper metabolism in humans. The American journal of clinical nutrition, 2005, 81, 807-813. [34] D. M. Danks, Copper deficiency in humans. Annual review of nutrition, 1988, 8, 235-257. [35] J. R. Turnlund, Human whole-body copper metabolism. The American journal of clinical nutrition, 1998, 67, 960s-964s. [36] L. A. Finney, T. V. O'Halloran, Transition metal speciation in the cell: Insights from the chemistry of metal ion receptors. Science (New York, N.Y.), 2003, 300, 931-936. [37] R. A. Pufahl, C. P. Singer, K. L. Peariso, S. J. Lin, P. J. Schmidt, C. J. Fahrni, V. C. Culotta, J. E. Penner-Hahn, T. V. O'Halloran, Metal ion chaperone function of the soluble cu(i) receptor atx1. Science (New York, N.Y.), 1997, 278, 853-856. [38] T. D. Rae, P. J. Schmidt, R. A. Pufahl, V. C. Culotta, T. V. O'Halloran, Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science (New York, N.Y.), 1999, 284, 805-808. [39] D. Kahra, M. Kovermann, P. Wittung-Stafshede, The c-terminus of human copper importer ctr1 acts as a binding site and transfers copper to atox1. Biophysical journal, 2016, 110, 95-102. [40] T. Tsang, C. I. Davis, D. C. Brady, Copper biology. Curr Biol, 2021, 31, R421-R427. [41] D. Horn, A. Barrientos, Mitochondrial copper metabolism and delivery to cytochrome c oxidase. IUBMB Life, 2008, 60, 421-429. [42] N. G. Robinett, R. L. Peterson, V. C. Culotta, Eukaryotic copper-only superoxide dismutases (sods): A new class of sod enzymes and sod-like protein domains. J Biol Chem, 2018, 293, 4636-4643. [43] P. C. Wong, D. Waggoner, J. R. Subramaniam, L. Tessarollo, T. B. Bartnikas, V. C. Culotta, D. L. Price, J. Rothstein, J. D. Gitlin, Copper chaperone for superoxide dismutase is essential to activate mammalian cu/zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2886-2891. [44] C. H. Yu, N. Yang, J. Bothe, M. Tonelli, S. Nokhrin, N. V. Dolgova, L. Braiterman, S. Lutsenko, O. Y. Dmitriev, The metal chaperone atox1 regulates the activity of the human copper transporter atp7b by modulating domain dynamics. Journal of Biological Chemistry, 2017, 292, 18169-18177. [45] T. V. Vendelboe, P. Harris, Y. Zhao, T. S. Walter, K. Harlos, K. El Omari, H. E. Christensen, The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution. Science advances, 2016, 2, e1500980. [46] D. E. Ash, N. J. Papadopoulos, G. Colombo, J. J. Villafranca, Kinetic and spectroscopic studies of the interaction of copper with dopamine beta-hydroxylase. J Biol Chem, 1984, 259, 3395-3398. [47] T. Xiao, C. M. Ackerman, E. C. Carroll, S. Jia, A. Hoagland, J. Chan, B. Thai, C. S. Liu, E. Y. Isacoff, C. J. Chang, Copper regulates rest-activity cycles through the locus coeruleus-norepinephrine system. Nat Chem Biol, 2018, 14, 655-663. [48] K. Schmidt, M. Ralle, T. Schaffer, S. Jayakanthan, B. Bari, A. Muchenditsi, S. Lutsenko, Atp7a and atp7b copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase. J Biol Chem, 2018, 293, 20085-20098. [49] S. G. Kaler, Atp7a-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol, 2011, 7, 15-29. [50] X. Zhang, Q. Wang, J. Wu, J. Wang, Y. Shi, M. Liu, Crystal structure of human lysyl oxidase-like 2 (hloxl2) in a precursor state. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3828-3833. [51] S. Blockhuys, X. Zhang, P. Wittung-Stafshede, Single-cell tracking demonstrates copper chaperone atox1 to be required for breast cancer cell migration. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2014-2019. [52] V. Shanbhag, K. Jasmer-McDonald, S. Zhu, A. L. Martin, N. Gudekar, A. Khan, E. Ladomersky, K. Singh, G. A. Weisman, M. J. Petris, Atp7a delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6836-6841. [53] M. L. Turski, D. C. Brady, H. J. Kim, B. E. Kim, Y. Nose, C. M. Counter, D. R. Winge, D. J. Thiele, A novel role for copper in ras/mitogen-activated protein kinase signaling. Mol Cell Biol, 2012, 32, 1284-1295. [54] T. Tsang, J. M. Posimo, A. A. Gudiel, M. Cicchini, D. M. Feldser, D. C. Brady, Copper is an essential regulator of the autophagic kinases ulk1/2 to drive lung adenocarcinoma. Nat Cell Biol, 2020, 22, 412-424. [55] L. Krishnamoorthy, J. A. Cotruvo, Jr., J. Chan, H. Kaluarachchi, A. Muchenditsi, V. S. Pendyala, S. Jia, A. T. Aron, C. M. Ackerman, M. N. Wal, T. Guan, L. P. Smaga, S. L. Farhi, E. J. New, S. Lutsenko, C. J. Chang, Copper regulates cyclic-amp-dependent lipolysis. Nat Chem Biol, 2016, 12, 586-592. [56] C. Balsano, C. Porcu, S. Sideri, Is copper a new target to counteract the progression of chronic diseases? Metallomics, 2018, 10, 1712-1722. [57] E. Aigner, G. Weiss, C. Datz, Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World journal of hepatology, 2015, 7, 177-188. [58] J. Lowe, R. Taveira-da-Silva, E. Hilário-Souza, Dissecting copper homeostasis in diabetes mellitus. IUBMB Life, 2017, 69, 255-262. [59] U. J. Jung, M. S. Choi, Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci, 2014, 15, 6184-6223. [60] N. Bomer, M. G. Pavez-Giani, N. Grote Beverborg, J. G. F. Cleland, D. J. van Veldhuisen, P. van der Meer, Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? Journal of internal medicine, 2022, 291, 713-731. [61] X. Zuo, D. Dong, M. Sun, H. Xie, Y. J. Kang, Homocysteine restricts copper availability leading to suppression of cytochrome c oxidase activity in phenylephrine-treated cardiomyocytes. PloS one, 2013, 8, e67549. [62] M. Zeviani, D. H. Van Dyke, S. Servidei, S. C. Bauserman, E. Bonilla, E. T. Beaumont, J. Sharda, K. VanderLaan, S. DiMauro, Myopathy and fatal cardiopathy due to cytochrome c oxidase deficiency. Archives of neurology, 1986, 43, 1198-1202. [63] X. Chen, Q. Cai, R. Liang, D. Zhang, X. Liu, M. Zhang, Y. Xiong, M. Xu, Q. Liu, P. Li, P. Yu, A. Shi, Copper homeostasis and copper-induced cell death in the pathogenesis of cardiovascular disease and therapeutic strategies. Cell death & disease, 2023, 14, 105. [64] I. F. Scheiber, J. F. Mercer, R. Dringen, Metabolism and functions of copper in brain. Progress in neurobiology, 2014, 116, 33-57. [65] N. Krebs, C. Langkammer, W. Goessler, S. Ropele, F. Fazekas, K. Yen, E. Scheurer, Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry. Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements (GMS), 2014, 28, 1-7. [66] P. Paoletti, C. Bellone, Q. Zhou, Nmda receptor subunit diversity: Impact on receptor properties, synaptic plasticity and disease. Nature reviews. Neuroscience, 2013, 14, 383-400. [67] L. Yao, Q. Zhou, Enhancing nmda receptor function: Recent progress on allosteric modulators. Neural plasticity, 2017, 2017, 2875904. [68] R. Squitti, I. Simonelli, M. Ventriglia, M. Siotto, P. Pasqualetti, A. Rembach, J. Doecke, A. I. Bush, Meta-analysis of serum non-ceruloplasmin copper in alzheimer's disease. Journal of Alzheimer's disease : JAD, 2014, 38, 809-822. [69] R. Squitti, R. Ghidoni, M. Siotto, M. Ventriglia, L. Benussi, A. Paterlini, M. Magri, G. Binetti, E. Cassetta, D. Caprara, F. Vernieri, P. M. Rossini, P. Pasqualetti, Value of serum nonceruloplasmin copper for prediction of mild cognitive impairment conversion to alzheimer disease. Annals of neurology, 2014, 75, 574-580. [70] S. Bucossi, M. Ventriglia, V. Panetta, C. Salustri, P. Pasqualetti, S. Mariani, M. Siotto, P. M. Rossini, R. Squitti, Copper in alzheimer's disease: A meta-analysis of serum,plasma, and cerebrospinal fluid studies. Journal of Alzheimer's disease : JAD, 2011, 24, 175-185. [71] A. I. Bush, C. L. Masters, R. E. Tanzi, Copper, beta-amyloid, and alzheimer's disease: Tapping a sensitive connection. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11193-11194. [72] D. Yugay, D. P. Goronzy, L. M. Kawakami, S. A. Claridge, T. B. Song, Z. Yan, Y. H. Xie, J. Gilles, Y. Yang, P. S. Weiss, Copper ion binding site in β-amyloid peptide. Nano letters, 2016, 16, 6282-6289. [73] R. Squitti, C. Salustri, Agents complexing copper as a therapeutic strategy for the treatment of alzheimer's disease. Current Alzheimer research, 2009, 6, 476-487. [74] O. Bandmann, K. H. Weiss, S. G. Kaler, Wilson's disease and other neurological copper disorders. The Lancet. Neurology, 2015, 14, 103-113. [75] J. Y. Tang, F. Ou-Yang, M. F. Hou, H. W. Huang, H. R. Wang, K. T. Li, S. Fayyaz, C. W. Shu, H. W. Chang, Oxidative stress-modulating drugs have preferential anticancer effects - involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Seminars in cancer biology, 2019, 58, 109-117. [76] G. Bjørklund, S. Chirumbolo, Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition (Burbank, Los Angeles County, Calif.), 2017, 33, 311-321. [77] A. Gupte, R. J. Mumper, Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer treatment reviews, 2009, 35, 32-46. [78] M. Zowczak, M. Iskra, L. Torliński, S. Cofta, Analysis of serum copper and zinc concentrations in cancer patients. Biological trace element research, 2001, 82, 1-8. [79] S. Blockhuys, P. Wittung-Stafshede, Roles of copper-binding proteins in breast cancer. Int J Mol Sci, 2017, 18. [80] M. Zhang, M. Shi, Y. Zhao, Association between serum copper levels and cervical cancer risk: A meta-analysis. Bioscience reports, 2018, 38. [81] D. Denoyer, S. Masaldan, S. La Fontaine, M. A. Cater, Targeting copper in cancer therapy: 'Copper that cancer'. Metallomics, 2015, 7, 1459-1476. [82] M. Stepien, M. Jenab, H. Freisling, N. P. Becker, M. Czuban, A. Tjønneland, A. Olsen, K. Overvad, M. C. Boutron-Ruault, F. R. Mancini, I. Savoye, V. Katzke, T. Kühn, H. Boeing, K. Iqbal, A. Trichopoulou, C. Bamia, P. Orfanos, D. Palli, S. Sieri, R. Tumino, A. Naccarati, S. Panico, H. B. A. Bueno-de-Mesquita, P. H. Peeters, E. Weiderpass, S. Merino, P. Jakszyn, M. J. Sanchez, M. Dorronsoro, J. M. Huerta, A. Barricarte, S. Boden, B. van Guelpen, N. Wareham, K. T. Khaw, K. E. Bradbury, A. J. Cross, L. Schomburg, D. J. Hughes, Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the european prospective investigation into cancer and nutrition cohort. Carcinogenesis, 2017, 38, 699-707. [83] C. Porcu, L. Antonucci, B. Barbaro, B. Illi, S. Nasi, M. Martini, A. Licata, L. Miele, A. Grieco, C. Balsano, Copper/myc/ctr1 interplay: A dangerous relationship in hepatocellular carcinoma. Oncotarget, 2018, 9, 9325-9343. [84] D. C. Rigiracciolo, A. Scarpelli, R. Lappano, A. Pisano, M. F. Santolla, P. De Marco, F. Cirillo, A. R. Cappello, V. Dolce, A. Belfiore, M. Maggiolini, E. M. De Francesco, Copper activates hif-1α/gper/vegf signalling in cancer cells. Oncotarget, 2015, 6, 34158-34177. [85] N. Chan, A. Willis, N. Kornhauser, M. M. Ward, S. B. Lee, E. Nackos, B. R. Seo, E. Chuang, T. Cigler, A. Moore, D. Donovan, M. Vallee Cobham, V. Fitzpatrick, S. Schneider, A. Wiener, J. Guillaume-Abraham, E. Aljom, R. Zelkowitz, J. D. Warren, M. E. Lane, C. Fischbach, V. Mittal, L. Vahdat, Influencing the tumor microenvironment: A phase ii study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clinical cancer research : an official journal of the American Association for Cancer Research, 2017, 23, 666-676. [86] C. K. Sen, S. Khanna, M. Venojarvi, P. Trikha, E. C. Ellison, T. K. Hunt, S. Roy, Copper-induced vascular endothelial growth factor expression and wound healing. American journal of physiology. Heart and circulatory physiology, 2002, 282, H1821-1827. [87] X. Z. Wu, New strategy of antiangiogenic therapy for hepatocellular carcinoma. Neoplasma, 2008, 55, 472-481. [88] S. R. Bharathi Devi, M. A. Dhivya, K. N. Sulochana, Copper transporters and chaperones: Their function on angiogenesis and cellular signalling. Journal of biosciences, 2016, 41, 487-496. [89] F. Martin, T. Linden, D. M. Katschinski, F. Oehme, I. Flamme, C. K. Mukhopadhyay, K. Eckhardt, J. Tröger, S. Barth, G. Camenisch, R. H. Wenger, Copper-dependent activation of hypoxia-inducible factor (hif)-1: Implications for ceruloplasmin regulation. Blood, 2005, 105, 4613-4619. [90] D. C. Brady, M. S. Crowe, M. L. Turski, G. A. Hobbs, X. Yao, A. Chaikuad, S. Knapp, K. Xiao, S. L. Campbell, D. J. Thiele, C. M. Counter, Copper is required for oncogenic braf signalling and tumorigenesis. Nature, 2014, 509, 492-496. [91] R. D. Hall, R. R. Kudchadkar, Braf mutations: Signaling, epidemiology, and clinical experience in multiple malignancies. Cancer control : journal of the Moffitt Cancer Center, 2014, 21, 221-230. [92] S. Blockhuys, E. Celauro, C. Hildesjö, A. Feizi, O. Stål, J. C. Fierro-González, P. Wittung-Stafshede, Defining the human copper proteome and analysis of its expression variation in cancers. Metallomics, 2017, 9, 112-123. [93] V. N. Gladyshev, Y. Zhang, Comparative genomics analysis of the metallomes. Metal ions in life sciences, 2013, 12, 529-580. [94] K. J. Waldron, N. J. Robinson, How do bacterial cells ensure that metalloproteins get the correct metal? Nature reviews. Microbiology, 2009, 7, 25-35. [95] S. M. Yannone, S. Hartung, A. L. Menon, M. W. Adams, J. A. Tainer, Metals in biology: Defining metalloproteomes. Current opinion in biotechnology, 2012, 23, 89-95. [96] K. J. Waldron, J. C. Rutherford, D. Ford, N. J. Robinson, Metalloproteins and metal sensing. Nature, 2009, 460, 823-830. [97] Y. Zhang, J. Zheng, Bioinformatics of metalloproteins and metalloproteomes. Molecules (Basel, Switzerland), 2020, 25. [98] C. Andreini, L. Banci, I. Bertini, A. Rosato, Counting the zinc-proteins encoded in the human genome. Journal of proteome research, 2006, 5, 196-201. [99] A. Passerini, M. Punta, A. Ceroni, B. Rost, P. Frasconi, Identifying cysteines and histidines in transition-metal-binding sites using support vector machines and neural networks. Proteins, 2006, 65, 305-316. [100] İ. Haberal, H. Oğul, Prediction of protein metal binding sites using deep neural networks. Molecular informatics, 2019, 38, e1800169. [101] M. Babor, S. Gerzon, B. Raveh, V. Sobolev, M. Edelman, Prediction of transition metal-binding sites from apo protein structures. Proteins, 2008, 70, 208-217. [102] U. Göbel, C. Sander, R. Schneider, A. Valencia, Correlated mutations and residue contacts in proteins. Proteins, 1994, 18, 309-317. [103] L. C. Martin, G. B. Gloor, S. D. Dunn, L. M. Wahl, Using information theory to search for co-evolving residues in proteins. Bioinformatics (Oxford, England), 2005, 21, 4116-4124. [104] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks, C. Sander, R. Zecchina, J. N. Onuchic, T. Hwa, M. Weigt, Direct-coupling analysis of residue coevolution captures native contacts across many protein families. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1293-1301. [105] D. S. Marks, T. A. Hopf, C. Sander, Protein structure prediction from sequence variation. Nature biotechnology, 2012, 30, 1072-1080. [106] Q. Cong, I. Anishchenko, S. Ovchinnikov, D. Baker, Protein interaction networks revealed by proteome coevolution. Science (New York, N.Y.), 2019, 365, 185-189. [107] A. Toth-Petroczy, P. Palmedo, J. Ingraham, T. A. Hopf, B. Berger, C. Sander, D. S. Marks, Structured states of disordered proteins from genomic sequences. Cell, 2016, 167, 158-170.e112. [108] Y. Cheng, H. Wang, H. Xu, Y. Liu, B. Ma, X. Chen, X. Zeng, X. Wang, B. Wang, C. Shiau, S. Ovchinnikov, X. D. Su, C. Wang, Co-evolution-based prediction of metal-binding sites in proteomes by machine learning. Nat Chem Biol, 2023, 19, 548-555. [109] C. Andreini, I. Bertini, A. Rosato, Metalloproteomes: A bioinformatic approach. Accounts of chemical research, 2009, 42, 1471-1479. [110] R. C. Cheung, J. H. Wong, T. B. Ng, Immobilized metal ion affinity chromatography: A review on its applications. Applied microbiology and biotechnology, 2012, 96, 1411-1420. [111] R. G. Pearson, Hard and soft acids and bases—the evolution of a chemical concept. Coordination Chemistry Reviews, 1990, 100, 403-425. [112] H. Fu, X. Ding, W. Zhang, Y. J. Kang, Profiling of nuclear copper-binding proteins under hypoxic condition. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 2019, 32, 329-341. [113] D. P. Clark, N. J. Pazdernik, M. R. McGehee, in Molecular biology (third edition) (Eds.: D. P. Clark, N. J. Pazdernik, M. R. McGehee), Academic Cell, 2019, pp. 484-520. [114] H. Öhrvik, P. Wittung-Stafshede, Identification of new potential interaction partners for human cytoplasmic copper chaperone atox1: Roles in gene regulation? Int J Mol Sci, 2015, 16, 16728-16739. [115] W. H. Dunham, M. Mullin, A. C. Gingras, Affinity-purification coupled to mass spectrometry: Basic principles and strategies. Proteomics, 2012, 12, 1576-1590. [116] A. Brückner, C. Polge, N. Lentze, D. Auerbach, U. Schlattner, Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci, 2009, 10, 2763-2788. [117] W. Qin, K. F. Cho, P. E. Cavanagh, A. Y. Ting, Deciphering molecular interactions by proximity labeling. Nature methods, 2021, 18, 133-143. [118] K. J. Roux, D. I. Kim, M. Raida, B. Burke, A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. The Journal of cell biology, 2012, 196, 801-810. [119] S. S. Lam, J. D. Martell, K. J. Kamer, T. J. Deerinck, M. H. Ellisman, V. K. Mootha, A. Y. Ting, Directed evolution of apex2 for electron microscopy and proximity labeling. Nature methods, 2015, 12, 51-54. [120] J. Li, Y. Wang, S. L. Chiu, H. T. Cline, Membrane targeted horseradish peroxidase as a marker for correlative fluorescence and electron microscopy studies. Frontiers in neural circuits, 2010, 4, 6. [121] C. Hopkins, A. Gibson, J. Stinchcombe, C. Futter, Chimeric molecules employing horseradish peroxidase as reporter enzyme for protein localization in the electron microscope. Methods in enzymology, 2000, 327, 35-45. [122] J. D. Martell, T. J. Deerinck, Y. Sancak, T. L. Poulos, V. K. Mootha, G. E. Sosinsky, M. H. Ellisman, A. Y. Ting, Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy. Nature biotechnology, 2012, 30, 1143-1148. [123] H. W. Rhee, P. Zou, N. D. Udeshi, J. D. Martell, V. K. Mootha, S. A. Carr, A. Y. Ting, Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science (New York, N.Y.), 2013, 339, 1328-1331. [124] V. Hung, N. D. Udeshi, S. S. Lam, K. H. Loh, K. J. Cox, K. Pedram, S. A. Carr, A. Y. Ting, Spatially resolved proteomic mapping in living cells with the engineered peroxidase apex2. Nature protocols, 2016, 11, 456-475. [125] B. T. Lobingier, R. Hüttenhain, K. Eichel, K. B. Miller, A. Y. Ting, M. von Zastrow, N. J. Krogan, An approach to spatiotemporally resolve protein interaction networks in living cells. Cell, 2017, 169, 350-360.e312. [126] J. Paek, M. Kalocsay, D. P. Staus, L. Wingler, R. Pascolutti, J. A. Paulo, S. P. Gygi, A. C. Kruse, Multidimensional tracking of gpcr signaling via peroxidase-catalyzed proximity labeling. Cell, 2017, 169, 338-349.e311. [127] F. Le Guerroué, F. Eck, J. Jung, T. Starzetz, M. Mittelbronn, M. Kaulich, C. Behrends, Autophagosomal content profiling reveals an lc3c-dependent piecemeal mitophagy pathway. Molecular cell, 2017, 68, 786-796.e786. [128] K. Bersuker, C. W. H. Peterson, M. To, S. J. Sahl, V. Savikhin, E. A. Grossman, D. K. Nomura, J. A. Olzmann, A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Developmental cell, 2018, 44, 97-112.e117. [129] R. Gupta, K. Somyajit, T. Narita, E. Maskey, A. Stanlie, M. Kremer, D. Typas, M. Lammers, N. Mailand, A. Nussenzweig, J. Lukas, C. Choudhary, DNA repair network analysis reveals shieldin as a key regulator of nhej and parp inhibitor sensitivity. Cell, 2018, 173, 972-988.e923. [130] J. Jia, A. Claude-Taupin, Y. Gu, S. W. Choi, R. Peters, B. Bissa, M. H. Mudd, L. Allers, S. Pallikkuth, K. A. Lidke, M. Salemi, B. Phinney, M. Mari, F. Reggiori, V. Deretic, Galectin-3 coordinates a cellular system for lysosomal repair and removal. Developmental cell, 2020, 52, 69-87.e68. [131] J. Jia, Y. P. Abudu, A. Claude-Taupin, Y. Gu, S. Kumar, S. W. Choi, R. Peters, M. H. Mudd, L. Allers, M. Salemi, B. Phinney, T. Johansen, V. Deretic, Galectins control mtor in response to endomembrane damage. Molecular cell, 2018, 70, 120-135.e128. [132] A. Chapman-Smith, J. E. Cronan, Jr., Molecular biology of biotin attachment to proteins. The Journal of nutrition, 1999, 129, 477s-484s. [133] M. D. Lane, K. L. Rominger, D. L. Young, F. Lynen, The enzymatic synthesis of holotranscarboxylase from apotranscarboxylase and (+)-biotin. Ii. Investigation of the reaction mechanism. J Biol Chem, 1964, 239, 2865-2871. [134] K. Kwon, D. Beckett, Function of a conserved sequence motif in biotin holoenzyme synthetases. Protein science : a publication of the Protein Society, 2000, 9, 1530-1539. [135] E. D. Streaker, D. Beckett, Nonenzymatic biotinylation of a biotin carboxyl carrier protein: Unusual reactivity of the physiological target lysine. Protein science : a publication of the Protein Society, 2006, 15, 1928-1935. [136] C. C. Chou, Y. Zhang, M. E. Umoh, S. W. Vaughan, I. Lorenzini, F. Liu, M. Sayegh, P. G. Donlin-Asp, Y. H. Chen, D. M. Duong, N. T. Seyfried, M. A. Powers, T. Kukar, C. M. Hales, M. Gearing, N. J. Cairns, K. B. Boylan, D. W. Dickson, R. Rademakers, Y. J. Zhang, L. Petrucelli, R. Sattler, D. C. Zarnescu, J. D. Glass, W. Rossoll, Tdp-43 pathology disrupts nuclear pore complexes and nucleocytoplasmic transport in als/ftd. Nature neuroscience, 2018, 21, 228-239. [137] A. L. Couzens, J. D. Knight, M. J. Kean, G. Teo, A. Weiss, W. H. Dunham, Z. Y. Lin, R. D. Bagshaw, F. Sicheri, T. Pawson, J. L. Wrana, H. Choi, A. C. Gingras, Protein interaction network of the mammalian hippo pathway reveals mechanisms of kinase-phosphatase interactions. Science signaling, 2013, 6, rs15. [138] E. Coyaud, M. Mis, E. M. Laurent, W. H. Dunham, A. L. Couzens, M. Robitaille, A. C. Gingras, S. Angers, B. Raught, Bioid-based identification of skp cullin f-box (scf)β-trcp1/2 e3 ligase substrates. Molecular & cellular proteomics : MCP, 2015, 14, 1781-1795. [139] J. A. Cutler, R. Tahir, S. K. Sreenivasamurthy, C. Mitchell, S. Renuse, R. S. Nirujogi, A. H. Patil, M. Heydarian, X. Wong, X. Wu, T. C. Huang, M. S. Kim, K. L. Reddy, A. Pandey, Differential signaling through p190 and p210 bcr-abl fusion proteins revealed by interactome and phosphoproteome analysis. Leukemia, 2017, 31, 1513-1524. [140] G. D. Gupta, É. Coyaud, J. Gonçalves, B. A. Mojarad, Y. Liu, Q. Wu, L. Gheiratmand, D. Comartin, J. M. Tkach, S. W. Cheung, M. Bashkurov, M. Hasegan, J. D. Knight, Z. Y. Lin, M. Schueler, F. Hildebrandt, J. Moffat, A. C. Gingras, B. Raught, L. Pelletier, A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell, 2015, 163, 1484-1499. [141] Q. Lin, Z. Zhou, W. Luo, M. Fang, M. Li, H. Li, Screening of proximal and interacting proteins in rice protoplasts by proximity-dependent biotinylation. Frontiers in plant science, 2017, 8, 749. [142] B. Morriswood, K. Havlicek, L. Demmel, S. Yavuz, M. Sealey-Cardona, K. Vidilaseris, D. Anrather, J. Kostan, K. Djinovic-Carugo, K. J. Roux, G. Warren, Novel bilobe components in trypanosoma brucei identified using proximity-dependent biotinylation. Eukaryotic cell, 2013, 12, 356-367. [143] I. Meyer, T. Peter, P. Batsios, O. Kuhnert, A. Krüger-Genge, C. Camurça, R. Gräf, Cp39, cp75 and cp91 are major structural components of the dictyostelium centrosome's core structure. European journal of cell biology, 2017, 96, 119-130. [144] A. Uezu, D. J. Kanak, T. W. Bradshaw, E. J. Soderblom, C. M. Catavero, A. C. Burette, R. J. Weinberg, S. H. Soderling, Identification of an elaborate complex mediating postsynaptic inhibition. Science (New York, N.Y.), 2016, 353, 1123-1129. [145] N. Opitz, K. Schmitt, V. Hofer-Pretz, B. Neumann, H. Krebber, G. H. Braus, O. Valerius, Capturing the asc1p/receptor for activated c kinase 1 (rack1) microenvironment at the head region of the 40s ribosome with quantitative bioid in yeast. Molecular & cellular proteomics : MCP, 2017, 16, 2199-2218. [146] P. Kaewsapsak, D. M. Shechner, W. Mallard, J. L. Rinn, A. Y. Ting, Live-cell mapping of organelle-associated rnas via proximity biotinylation combined with protein-rna crosslinking. eLife, 2017, 6. [147] T. C. Branon, J. A. Bosch, A. D. Sanchez, N. D. Udeshi, T. Svinkina, S. A. Carr, J. L. Feldman, N. Perrimon, A. Y. Ting, Efficient proximity labeling in living cells and organisms with turboid. Nature biotechnology, 2018, 36, 880-887. [148] Y. Zhang, G. Song, N. K. Lal, U. Nagalakshmi, Y. Li, W. Zheng, P. J. Huang, T. C. Branon, A. Y. Ting, J. W. Walley, S. P. Dinesh-Kumar, Turboid-based proximity labeling reveals that ubr7 is a regulator of n nlr immune receptor-mediated immunity. Nature communications, 2019, 10, 3252. [149] S. Rayaprolu, S. Bitarafan, J. V. Santiago, R. Betarbet, S. Sunna, L. Cheng, H. Xiao, R. S. Nelson, P. Kumar, P. Bagchi, D. M. Duong, A. M. Goettemoeller, V. J. Oláh, M. Rowan, A. I. Levey, L. B. Wood, N. T. Seyfried, S. Rangaraju, Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain. Nature communications, 2022, 13, 2927. [150] K. E. Kim, I. Park, J. Kim, M. G. Kang, W. G. Choi, H. Shin, J. S. Kim, H. W. Rhee, J. M. Suh, Dynamic tracking and identification of tissue-specific secretory proteins in the circulation of live mice. Nature communications, 2021, 12, 5204. [151] T. W. Kim, C. H. Park, C. C. Hsu, Y. W. Kim, Y. W. Ko, Z. Zhang, J. Y. Zhu, Y. C. Hsiao, T. Branon, K. Kaasik, E. Saldivar, K. Li, A. Pasha, N. J. Provart, A. L. Burlingame, S. L. Xu, A. Y. Ting, Z. Y. Wang, Mapping the signaling network of bin2 kinase using turboid-mediated biotin labeling and phosphoproteomics. The Plant cell, 2023, 35, 975-993. [152] L. Chen, N. Li, M. Zhang, M. Sun, J. Bian, B. Yang, Z. Li, J. Wang, F. Li, X. Shi, Y. Wang, F. Yuan, P. Zou, C. Shan, J. Wang, Apex2-based proximity labeling of atox1 identifies crip2 as a nuclear copper-binding protein that regulates autophagy activation. Angewandte Chemie (International ed. in English), 2021, 60, 25346-25355. [153] Y. Hatori, S. Clasen, N. M. Hasan, A. N. Barry, S. Lutsenko, Functional partnership of the copper export machinery and glutathione balance in human cells. J Biol Chem, 2012, 287, 26678-26687. [154] E. J. Ge, A. I. Bush, A. Casini, P. A. Cobine, J. R. Cross, G. M. DeNicola, Q. P. Dou, K. J. Franz, V. M. Gohil, S. Gupta, S. G. Kaler, S. Lutsenko, V. Mittal, M. J. Petris, R. Polishchuk, M. Ralle, M. L. Schilsky, N. K. Tonks, L. T. Vahdat, L. Van Aelst, D. Xi, P. Yuan, D. C. Brady, C. J. Chang, Connecting copper and cancer: From transition metal signalling to metalloplasia. Nature reviews. Cancer, 2022, 22, 102-113. [155] M. Liao, C. Li, C. Hu, J. Ding, Copper-binding proteins genes set predicting the overall survival and immune infiltration in hepatocellular carcinoma by bioinformatic analysis. Biochemistry and biophysics reports, 2023, 34, 101466. [156] J. Wang, C. Luo, C. Shan, Q. You, J. Lu, S. Elf, Y. Zhou, Y. Wen, J. L. Vinkenborg, J. Fan, H. Kang, R. Lin, D. Han, Y. Xie, J. Karpus, S. Chen, S. Ouyang, C. Luan, N. Zhang, H. Ding, M. Merkx, H. Liu, J. Chen, H. Jiang, C. He, Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation. Nature chemistry, 2015, 7, 968-979. [157] A. C. Rosenzweig, D. L. Huffman, M. Y. Hou, A. K. Wernimont, R. A. Pufahl, T. V. O'Halloran, Crystal structure of the atx1 metallochaperone protein at 1.02 a resolution. Structure (London, England : 1993), 1999, 7, 605-617. [158] F. Arnesano, L. Banci, I. Bertini, D. L. Huffman, T. V. O'Halloran, Solution structure of the cu(i) and apo forms of the yeast metallochaperone, atx1. Biochemistry, 2001, 40, 1528-1539. [159] A. Badarau, C. Dennison, Copper trafficking mechanism of cxxc-containing domains: Insight from the ph-dependence of their cu(i) affinities. Journal of the American Chemical Society, 2011, 133, 2983-2988. [160] Y. Hatori, S. Lutsenko, The role of copper chaperone atox1 in coupling redox homeostasis to intracellular copper distribution. Antioxidants (Basel, Switzerland), 2016, 5. [161] T. Kortemme, T. E. Creighton, Ionisation of cysteine residues at the termini of model alpha-helical peptides. Relevance to unusual thiol pka values in proteins of the thioredoxin family. Journal of molecular biology, 1995, 253, 799-812. [162] I. H. Hung, R. L. Casareno, G. Labesse, F. S. Mathews, J. D. Gitlin, Hah1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem, 1998, 273, 1749-1754. [163] Y. Hatori, S. Lutsenko, An expanding range of functions for the copper chaperone/antioxidant protein atox1. Antioxidants & redox signaling, 2013, 19, 945-957. [164] J. Brose, S. La Fontaine, A. G. Wedd, Z. Xiao, Redox sulfur chemistry of the copper chaperone atox1 is regulated by the enzyme glutaredoxin 1, the reduction potential of the glutathione couple gssg/2gsh and the availability of cu(i). Metallomics, 2014, 6, 793-808. [165] M. A. Cater, S. Materia, Z. Xiao, K. Wolyniec, S. M. Ackland, Y. W. Yap, N. S. Cheung, S. La Fontaine, Glutaredoxin1 protects neuronal cells from copper-induced toxicity. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 2014, 27, 661-672. [166] W. C. J. Singleton, K. T. McInnes, M. A. Cater, W. R. Winnall, R. McKirdy, Y. Yu, P. E. Taylor, B. X. Ke, D. R. Richardson, J. F. B. Mercer, S. La Fontaine, Role of glutaredoxin1 and glutathione in regulating the activity of the copper-transporting p-type atpases, atp7a and atp7b. J Biol Chem, 2010, 285, 27111-27121. [167] C. M. Lim, M. A. Cater, J. F. Mercer, S. La Fontaine, Copper-dependent interaction of glutaredoxin with the n termini of the copper-atpases (atp7a and atp7b) defective in menkes and wilson diseases. Biochem Biophys Res Commun, 2006, 348, 428-436. [168] S. D. Bouldin, M. A. Darch, P. J. Hart, C. E. Outten, Redox properties of the disulfide bond of human cu,zn superoxide dismutase and the effects of human glutaredoxin 1. The Biochemical journal, 2012, 446, 59-67. [169] A. Das, V. Sudhahar, G. F. Chen, H. W. Kim, S. W. Youn, L. Finney, S. Vogt, J. Yang, J. Kweon, B. Surenkhuu, M. Ushio-Fukai, T. Fukai, Endothelial antioxidant-1: A key mediator of copper-dependent wound healing in vivo. Scientific reports, 2016, 6, 33783. [170] G. F. Chen, V. Sudhahar, S. W. Youn, A. Das, J. Cho, T. Kamiya, N. Urao, R. D. McKinney, B. Surenkhuu, T. Hamakubo, H. Iwanari, S. Li, J. W. Christman, S. Shantikumar, G. D. Angelini, C. Emanueli, M. Ushio-Fukai, T. Fukai, Copper transport protein antioxidant-1 promotes inflammatory neovascularization via chaperone and transcription factor function. Scientific reports, 2015, 5, 14780. [171] T. Fukai, M. Ushio-Fukai, Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxidants & redox signaling, 2011, 15, 1583-1606. [172] K. Ozumi, V. Sudhahar, H. W. Kim, G. F. Chen, T. Kohno, L. Finney, S. Vogt, R. D. McKinney, M. Ushio-Fukai, T. Fukai, Role of copper transport protein antioxidant 1 in angiotensin ii-induced hypertension: A key regulator of extracellular superoxide dismutase. Hypertension (Dallas, Tex. : 1979), 2012, 60, 476-486. [173] S. R. Setty, D. Tenza, E. V. Sviderskaya, D. C. Bennett, G. Raposo, M. S. Marks, Cell-specific atp7a transport sustains copper-dependent tyrosinase activity in melanosomes. Nature, 2008, 454, 1142-1146. [174] M. Matson Dzebo, S. Blockhuys, S. Valenzuela, E. Celauro, E. K. Esbjörner, P. Wittung-Stafshede, Copper chaperone atox1 interacts with cell cycle proteins. Computational and structural biotechnology journal, 2018, 16, 443-449. [175] S. Itoh, H. W. Kim, O. Nakagawa, K. Ozumi, S. M. Lessner, H. Aoki, K. Akram, R. D. McKinney, M. Ushio-Fukai, T. Fukai, Novel role of antioxidant-1 (atox1) as a copper-dependent transcription factor involved in cell proliferation. J Biol Chem, 2008, 283, 9157-9167. [176] T. Fukai, M. Ushio-Fukai, J. H. Kaplan, Copper transporters and copper chaperones: Roles in cardiovascular physiology and disease. American journal of physiology. Cell physiology, 2018, 315, C186-c201. [177] I. Horvath, S. Blockhuys, D. Šulskis, S. Holgersson, R. Kumar, B. M. Burmann, P. Wittung-Stafshede, Interaction between copper chaperone atox1 and parkinson's disease protein α-synuclein includes metal-binding sites and occurs in living cells. ACS chemical neuroscience, 2019, 10, 4659-4668. [178] I. Horvath, T. Werner, R. Kumar, P. Wittung-Stafshede, Copper chaperone blocks amyloid formation via ternary complex. Quarterly reviews of biophysics, 2018, 51, e6. [179] Y. J. Kim, G. J. Bond, T. Tsang, J. M. Posimo, L. Busino, D. C. Brady, Copper chaperone atox1 is required for mapk signaling and growth in braf mutation-positive melanoma. Metallomics, 2019, 11, 1430-1440. [180] J. Jin, M. Ma, S. Shi, J. Wang, P. Xiao, H. F. Yu, C. Zhang, Q. Guo, Z. Yu, Z. Lou, C. B. Teng, Copper enhances genotoxic drug resistance via atox1 activated DNA damage repair. Cancer letters, 2022, 536, 215651. [181] J. L. Burkhead, M. Ralle, P. Wilmarth, L. David, S. Lutsenko, Elevated copper remodels hepatic rna processing machinery in the mouse model of wilson's disease. Journal of molecular biology, 2011, 406, 44-58. [182] K. Fritz-Wolf, S. Urig, K. Becker, The structure of human thioredoxin reductase 1 provides insights into c-terminal rearrangements during catalysis. Journal of molecular biology, 2007, 370, 116-127. [183] J. Zhang, X. Li, X. Han, R. Liu, J. Fang, Targeting the thioredoxin system for cancer therapy. Trends in pharmacological sciences, 2017, 38, 794-808. [184] S. Gromer, L. Johansson, H. Bauer, L. D. Arscott, S. Rauch, D. P. Ballou, C. H. Williams, Jr., R. H. Schirmer, E. S. Arnér, Active sites of thioredoxin reductases: Why selenoproteins? Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12618-12623. [185] K. Fritz-Wolf, S. Kehr, M. Stumpf, S. Rahlfs, K. Becker, Crystal structure of the human thioredoxin reductase-thioredoxin complex. Nature communications, 2011, 2, 383. [186] B. Zhang, C. Ge, J. Yao, Y. Liu, H. Xie, J. Fang, Selective selenol fluorescent probes: Design, synthesis, structural determinants, and biological applications. Journal of the American Chemical Society, 2015, 137, 757-769. [187] A. Miranda-Vizuete, A. E. Damdimopoulos, J. R. Pedrajas, J. A. Gustafsson, G. Spyrou, Human mitochondrial thioredoxin reductase cdna cloning, expression and genomic organization. European journal of biochemistry, 1999, 261, 405-412. [188] Q. A. Sun, L. Kirnarsky, S. Sherman, V. N. Gladyshev, Selenoprotein oxidoreductase with specificity for thioredoxin and glutathione systems. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3673-3678. [189] Q. A. Sun, Y. Wu, F. Zappacosta, K. T. Jeang, B. J. Lee, D. L. Hatfield, V. N. Gladyshev, Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem, 1999, 274, 24522-24530. [190] C. Jakupoglu, G. K. Przemeck, M. Schneider, S. G. Moreno, N. Mayr, A. K. Hatzopoulos, M. H. de Angelis, W. Wurst, G. W. Bornkamm, M. Brielmeier, M. Conrad, Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol Cell Biol, 2005, 25, 1980-1988. [191] M. Conrad, C. Jakupoglu, S. G. Moreno, S. Lippl, A. Banjac, M. Schneider, H. Beck, A. K. Hatzopoulos, U. Just, F. Sinowatz, W. Schmahl, K. R. Chien, W. Wurst, G. W. Bornkamm, M. Brielmeier, Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol Cell Biol, 2004, 24, 9414-9423. [192] M. S. Shoshan, Y. Lehman, W. Goch, W. Bal, E. Y. Tshuva, N. Metanis, Selenocysteine containing analogues of atx1-based peptides protect cells from copper ion toxicity. Organic & biomolecular chemistry, 2016, 14, 6979-6984. [193] A. E. Damdimopoulos, A. Miranda-Vizuete, E. Treuter, J. A. Gustafsson, G. Spyrou, An alternative splicing variant of the selenoprotein thioredoxin reductase is a modulator of estrogen signaling. J Biol Chem, 2004, 279, 38721-38729. [194] N. Vita, S. Platsaki, A. Baslé, S. J. Allen, N. G. Paterson, A. T. Crombie, J. C. Murrell, K. J. Waldron, C. Dennison, A four-helix bundle stores copper for methane oxidation. Nature, 2015, 525, 140-143. [195] L. Huang, C. Zhang, Microscale thermophoresis (mst) to detect the interaction between purified protein and small molecule. Methods in molecular biology (Clifton, N.J.), 2021, 2213, 187-193. [196] N. Reznik, A. D. Gallo, K. W. Rush, G. Javitt, Y. Fridmann-Sirkis, T. Ilani, N. A. Nairner, S. Fishilevich, D. Gokhman, K. N. Chacón, K. J. Franz, D. Fass, Intestinal mucin is a chaperone of multivalent copper. Cell, 2022, 185, 4206-4215.e4211. [197] M. S. Niemiec, C. F. Weise, P. Wittung-Stafshede, In vitro thermodynamic dissection of human copper transfer from chaperone to target protein. PloS one, 2012, 7, e36102. [198] F. Hussain, A. Rodriguez-Granillo, P. Wittung-Stafshede, Lysine-60 in copper chaperone atox1 plays an essential role in adduct formation with a target wilson disease domain. Journal of the American Chemical Society, 2009, 131, 16371-16373. [199] H. Glauninger, Y. Zhang, K. A. Higgins, A. D. Jacobs, J. E. Martin, Y. Fu, H. J. Coyne Rd, K. E. Bruce, M. J. Maroney, D. E. Clemmer, D. A. Capdevila, D. P. Giedroc, Metal-dependent allosteric activation and inhibition on the same molecular scaffold: The copper sensor copy from streptococcus pneumoniae. Chemical science, 2018, 9, 105-118. [200] B. Douzi, Protein-protein interactions: Surface plasmon resonance. Methods in molecular biology (Clifton, N.J.), 2017, 1615, 257-275. [201] X. Zhang, G. R. Walke, I. Horvath, R. Kumar, S. Blockhuys, S. Holgersson, P. H. Walton, P. Wittung-Stafshede, Memo1 binds reduced copper ions, interacts with copper chaperone atox1, and protects against copper-mediated redox activity in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2206905119. [202] P. Subedi, J. J. Paxman, G. Wang, A. A. Ukuwela, Z. Xiao, B. Heras, The scs disulfide reductase system cooperates with the metallochaperone cuep in salmonella copper resistance. J Biol Chem, 2019, 294, 15876-15888. [203] M. S. Niemiec, A. P. Dingeldein, P. Wittung-Stafshede, T versus d in the mtcxxc motif of copper transport proteins plays a role in directional metal transport. Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry, 2014, 19, 1037-1047. [204] S. Petzoldt, D. Kahra, M. Kovermann, A. P. Dingeldein, M. S. Niemiec, J. Ådén, P. Wittung-Stafshede, Human cytoplasmic copper chaperones atox1 and ccs exchange copper ions in vitro. Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 2015, 28, 577-585. [205] D. T. Hess, A. Matsumoto, S. O. Kim, H. E. Marshall, J. S. Stamler, Protein s-nitrosylation: Purview and parameters. Nature reviews. Molecular cell biology, 2005, 6, 150-166. [206] S. R. Jaffrey, H. Erdjument-Bromage, C. D. Ferris, P. Tempst, S. H. Snyder, Protein s-nitrosylation: A physiological signal for neuronal nitric oxide. Nat Cell Biol, 2001, 3, 193-197. [207] W. J. Durham, P. Aracena-Parks, C. Long, A. E. Rossi, S. A. Goonasekera, S. Boncompagni, D. L. Galvan, C. P. Gilman, M. R. Baker, N. Shirokova, F. Protasi, R. Dirksen, S. L. Hamilton, Ryr1 s-nitrosylation underlies environmental heat stroke and sudden death in y522s ryr1 knockin mice. Cell, 2008, 133, 53-65. [208] A. M. Bellinger, S. Reiken, C. Carlson, M. Mongillo, X. Liu, L. Rothman, S. Matecki, A. Lacampagne, A. R. Marks, Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nature medicine, 2009, 15, 325-330. [209] M. W. Foster, T. J. McMahon, J. S. Stamler, S-nitrosylation in health and disease. Trends in molecular medicine, 2003, 9, 160-168. [210] J. M. Hare, J. S. Stamler, No/redox disequilibrium in the failing heart and cardiovascular system. The Journal of clinical investigation, 2005, 115, 509-517. [211] K. H. Lim, B. B. Ancrile, D. F. Kashatus, C. M. Counter, Tumour maintenance is mediated by enos. Nature, 2008, 452, 646-649. [212] T. Uehara, T. Nakamura, D. Yao, Z. Q. Shi, Z. Gu, Y. Ma, E. Masliah, Y. Nomura, S. A. Lipton, S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature, 2006, 441, 513-517. [213] S. Lee, S. M. Kim, R. T. Lee, Thioredoxin and thioredoxin target proteins: From molecular mechanisms to functional significance. Antioxidants & redox signaling, 2013, 18, 1165-1207. [214] A. Holmgren, J. Lu, Thioredoxin and thioredoxin reductase: Current research with special reference to human disease. Biochem Biophys Res Commun, 2010, 396, 120-124. [215] E. S. Arnér, Focus on mammalian thioredoxin reductases-important selenoproteins with versatile functions. Biochimica et biophysica acta, 2009, 1790, 495-526. [216] M. Benhar, M. T. Forrester, J. S. Stamler, Protein denitrosylation: Enzymatic mechanisms and cellular functions. Nature reviews. Molecular cell biology, 2009, 10, 721-732. [217] M. Benhar, M. T. Forrester, D. T. Hess, J. S. Stamler, Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science (New York, N.Y.), 2008, 320, 1050-1054. [218] D. A. Mitchell, S. U. Morton, N. B. Fernhoff, M. A. Marletta, Thioredoxin is required for s-nitrosation of procaspase-3 and the inhibition of apoptosis in jurkat cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11609-11614. [219] D. A. Mitchell, M. A. Marletta, Thioredoxin catalyzes the s-nitrosation of the caspase-3 active site cysteine. Nat Chem Biol, 2005, 1, 154-158. [220] J. B. Mannick, C. Schonhoff, N. Papeta, P. Ghafourifar, M. Szibor, K. Fang, B. Gaston, S-nitrosylation of mitochondrial caspases. The Journal of cell biology, 2001, 154, 1111-1116. [221] G. Stubauer, A. Giuffrè, P. Sarti, Mechanism of s-nitrosothiol formation and degradation mediated by copper ions. J Biol Chem, 1999, 274, 28128-28133. [222] K. Inoue, T. Akaike, Y. Miyamoto, T. Okamoto, T. Sawa, M. Otagiri, S. Suzuki, T. Yoshimura, H. Maeda, Nitrosothiol formation catalyzed by ceruloplasmin. Implication for cytoprotective mechanism in vivo. J Biol Chem, 1999, 274, 27069-27075. [223] M. S. Crane, R. Ollosson, K. P. Moore, A. G. Rossi, I. L. Megson, Novel role for low molecular weight plasma thiols in nitric oxide-mediated control of platelet function. J Biol Chem, 2002, 277, 46858-46863. [224] P. Moriel, I. R. Pereira, M. C. Bertolami, D. S. Abdalla, Is ceruloplasmin an important catalyst for s-nitrosothiol generation in hypercholesterolemia? Free radical biology & medicine, 2001, 30, 318-326. [225] M. L. Schlief, T. West, A. M. Craig, D. M. Holtzman, J. D. Gitlin, Role of the menkes copper-transporting atpase in nmda receptor-mediated neuronal toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14919-14924. [226] L. Gasperini, E. Meneghetti, B. Pastore, F. Benetti, G. Legname, Prion protein and copper cooperatively protect neurons by modulating nmda receptor through s-nitrosylation. Antioxidants & redox signaling, 2015, 22, 772-784. [227] E. S. Arnér, L. Zhong, A. Holmgren, Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Methods in enzymology, 1999, 300, 226-239. [228] P. Zou, Y. Xia, J. Ji, W. Chen, J. Zhang, X. Chen, V. Rajamanickam, G. Chen, Z. Wang, L. Chen, Y. Wang, S. Yang, G. Liang, Piperlongumine as a direct trxr1 inhibitor with suppressive activity against gastric cancer. Cancer letters, 2016, 375, 114-126. [229] J. Lu, E. H. Chew, A. Holmgren, Targeting thioredoxin reductase is a basis for cancer therapy by arsenic trioxide. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12288-12293. [230] J. M. Sanchez-Ruiz, Ligand effects on protein thermodynamic stability. Biophysical chemistry, 2007, 126, 43-49. [231] C. J. Layton, H. W. Hellinga, Thermodynamic analysis of ligand-induced changes in protein thermal unfolding applied to high-throughput determination of ligand affinities with extrinsic fluorescent dyes. Biochemistry, 2010, 49, 10831-10841. [232] D. Martinez Molina, P. Nordlund, The cellular thermal shift assay: A novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annual review of pharmacology and toxicology, 2016, 56, 141-161. [233] X. Zeng, T. Wei, X. Wang, Y. Liu, Z. Tan, Y. Zhang, T. Feng, Y. Cheng, F. Wang, B. Ma, W. Qin, C. Gao, J. Xiao, C. Wang, Discovery of metal-binding proteins by thermal proteome profiling. Nat Chem Biol, 2024. [234] P. Rietveld, L. D. Arscott, A. Berry, N. S. Scrutton, M. P. Deonarain, R. N. Perham, C. H. Williams, Jr., Reductive and oxidative half-reactions of glutathione reductase from escherichia coli. Biochemistry, 1994, 33, 13888-13895. [235] P. W. Huber, K. G. Brandt, Kinetic studies of the mechanism of pyridine nucleotide dependent reduction of yeast glutathione reductase. Biochemistry, 1980, 19, 4569-4575. [236] L. D. Arscott, S. Gromer, R. H. Schirmer, K. Becker, C. H. Williams, Jr., The mechanism of thioredoxin reductase from human placenta is similar to the mechanisms of lipoamide dehydrogenase and glutathione reductase and is distinct from the mechanism of thioredoxin reductase from escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3621-3626. [237] H. Bauer, V. Massey, L. D. Arscott, R. H. Schirmer, D. P. Ballou, C. H. Williams, Jr., The mechanism of high mr thioredoxin reductase from drosophila melanogaster. J Biol Chem, 2003, 278, 33020-33028. [238] S. R. Lee, S. Bar-Noy, J. Kwon, R. L. Levine, T. C. Stadtman, S. G. Rhee, Mammalian thioredoxin reductase: Oxidation of the c-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2521-2526. [239] L. Zhong, A. Holmgren, Essential role of selenium in the catalytic activities of mammalian thioredoxin reductase revealed by characterization of recombinant enzymes with selenocysteine mutations. J Biol Chem, 2000, 275, 18121-18128. [240] P. Tsvetkov, S. Coy, B. Petrova, M. Dreishpoon, A. Verma, M. Abdusamad, J. Rossen, L. Joesch-Cohen, R. Humeidi, R. D. Spangler, J. K. Eaton, E. Frenkel, M. Kocak, S. M. Corsello, S. Lutsenko, N. Kanarek, S. Santagata, T. R. Golub, Copper induces cell death by targeting lipoylated tca cycle proteins. Science (New York, N.Y.), 2022, 375, 1254-1261.
﹀
|
开放日期: |
2024-09-12
|