- 无标题文档
查看论文信息

论文题名(中文):

 临床分离角膜致病真菌的生物学特性研究    

作者:

 李映昱    

学号:

 B1611110355    

论文语种:

 chi    

学科名称:

 眼科学    

学生类型:

 博士    

学校:

 北京大学医学部    

院系:

 第三临床医学院    

专业:

 眼科学    

第一导师姓名:

 王薇    

论文完成日期:

 2018-02-28    

论文答辩日期:

 2018-05-21    

论文题名(外文):

 Biological Characteristics of Clinical Fungus Strains Isolated from Cornea    

关键词(中文):

 临床分离菌株 ; 标准菌株 ; 角膜 ; 生物学特性 ; 真菌    

关键词(外文):

 Clinical isolates ; Standard strains ; Cornea ; Biological characteristics ; Fungal infection    

论文文摘(中文):

目的  总结行角膜移植的真菌性角膜炎病例的临床特点,分析不同致病真菌感染角膜组织的共性、特异性,为临床上真菌性角膜炎的预防、诊断、治疗提供有效线索。

方法  收集48例2012年1月~2017年12月就诊于北医三院眼科中心的行角膜移植手术的真菌性角膜感染患者的临床资料,收集不同菌属的致病真菌导致的角膜感染患者的一般资料,进行裂隙灯检查、角膜共聚焦显微镜检查、角膜刮片、病理组织学检查及真菌培养,归纳总结角膜真菌感染病例的临床特点,比较不同菌属导致的角膜真菌感染的异同。

结果  48例患者中,男女比例为1.82:1,50~59岁年龄段人数最多为21例(43.75%),农民感染占总人数的50%,发病高峰季节为秋季,最常见诱因为眼部外伤。导致真菌性角膜感染的常见致病真菌为镰刀菌(48.78%)、曲霉菌(12.20%)及酵母菌(12.20%)。到角膜移植前,各菌属导致的角膜真菌感染的病灶大小、病变深度、前房反应及病变总评分无明显差异。较丝状真菌感染而言,酵母菌有病程时间短、角膜刮片阳性率高的特点。角膜病理组织中,真菌菌丝均可呈平行、斜行、垂直方向生长,镰刀菌周围炎性细胞浸润较少,曲霉菌周围伴炎性细胞浸润,酵母菌往往被炎性细胞密集包围。

结论  各菌属在致病诱因、病理组织学改变等临床特点中有各自特点。经历了复杂的临床环境之后,临床致病真菌体现出不同于实验室标准菌株在实验动物角膜上的生物学行为表现,这些差异需要进一步的研究证实。

 

三种角膜致病真菌体外生长特性初探

目的  通过体外培养方法比较角膜临床分离真菌与标准菌株生长特性的异同,研究真菌致病的关键点。

方法  选取镰刀菌、曲霉菌、酵母菌临床致病菌株各2株,以相应菌属的标准菌株作为对照,制成孢子悬液。配制液态和固态形式的三种培养基:综合PDA培养基、YG培养基、YPD培养基和沙氏培养基。将镰刀菌和曲霉菌的临床菌株和标准菌株分别接种于综合PDA、YG和沙氏的固态、液态培养基上,在29℃下培养96小时,分别于10个时间点测定液态培养基上的吸光度,绘制生长曲线,并在固态培养基上观察记录真菌生长发育情况。 将酵母菌的临床菌株和标准菌株分别接种于YPD和沙氏的固态、液态培养基上,在29℃下培养72小时,分别于10个时间点测定液态培养基上的吸光度,绘制生长曲线,并在固态培养基上观察记录真菌生长发育情况。

结果  同一菌属的临床分离真菌与标准菌在同一培养基上体现出不同的生长特性。固体同种培养基上,镰刀菌临床分离菌菌落颜色比标准菌深;曲霉菌临床分离菌菌落范围、菌落有色范围比标准菌大,菌落颜色出现时间比标准菌早;热带假丝酵母临床分离菌菌落范围比标准菌大,白色假丝酵母临床分离菌与标准菌差异不明显。液体同种培养基上,临床分离菌株在营养丰富的培养基上与标准菌株生长曲线差异较小,在营养相对单一的沙氏培养基上,差异明显。不同培养基比较而言,YG为镰刀菌最适培养基,综合PDA为烟曲霉最适培养基,YPD为酵母菌最适培养基。沙氏培养基上,真菌生长相对较差,但最能体现临床分离菌和标准菌的差异。

结论  临床分离真菌在体外培养的条件下,体现出不同于标准菌株的生长特性,营养条件较差时表现出更强的环境适应能力。造成这些差异的原因可能与临床分离菌的临床经历有关。

 

体外培养营养环境对角膜致病真菌影响的研究

目的  通过体外培养方法比较角膜临床分离真菌与标准菌株在不同营养条件下生物学特性的异同,探索真菌致病的可能。

方法  配制5种不同葡萄糖、蛋白质浓度的培养基,包括液体和固体两种形式。将临床分离茄病镰刀菌、烟曲霉、白色假丝酵母、热带假丝酵母分别接种于不同的培养基上,相应菌种的标准菌作为对照,29℃培养96小时,分别在不同时间点测定液态培养基上的吸光度,绘制生长曲线,并在固态培养基上进行形态学观察。

结果  贫氮培养基上,各菌株生长均十分缓慢。较标准菌株而言,茄病镰刀菌和烟曲霉的临床分离菌在固体培养基上菌落形成更明显,孢子产生更早、更多。当培养基中蛋白质浓度不变,糖浓度变化时,茄病镰刀菌和烟曲霉的临床分离菌株体现出对环境变化更强的感知能力和适应能力,而热带假丝酵母和白色假丝酵母无论标准菌还是临床分离菌株,均体现出良好的对糖浓度变化的感知能力;当培养基中糖浓度接近糖尿病人房水糖浓度时,各菌属的临床分离真菌会表现出生长速度快、繁殖能力强等生长特点。

结论  氮源是真菌生长的十分重要的营养元素;当氮源缺乏时,角膜临床分离真菌较标准菌而言具有更好的生长能力和繁殖能力;当氮源充足时,角膜临床分离真菌具有更强的感知外界糖浓度变化的能力。

文摘(外文):

Object To summarize and analyze the clinical characteristics of cases of fungal keratitis, which causing by different species. Effective clues for the prevention, diagnosis and treatment of corneal fungal infection could be provided.

Methods A retrospective study of patients with keratitis referred to Peking University Third Hospital was conducted during the period from January 2012 to December 2017. 48 cases who underwent keratoplasty were screened out. The clinical information, including a detailed history, predisposing factors, symptoms, signs, treatment and systemic diseases, was collected and analyzed. Confocal microscopy, cornea scraping, pathological section examination and culture had been done.

Results In the 48 cases, the male to female ratio was 1.82:1. The 50-59 age group had the most cases (21 cases, 43.75%). Famer counted 50%. Trauma was the most common predisposing risk factor. The most common fungal species causing corneal fugal infection is Fusarium (48.78%), Aspergillus (12.20%) and Candida (12.20%). There were no obvious differences about lesion size, lesion depth, anterior chamber response and total lesion score among different species. Compared with the filamentous fungi, Candida had the features of shorter course and higher positive rate of cornea scraping. Pathologically, the fungi could have various growth forms with inflammatory cells infiltrating. There were few inflammatory cells besides Fusarium, some inflammatory cells with Aspergillus, but lots of inflammatory cells surrounding Candida.

Conclusions A series of biological changes might have been happened to the clinical fungal strains after infecting the eyes and experiencing the complex clinical environment, which should be approved by more researches.

 

Growth Characteristics of Clinical Corneal Isolates of Fusarium, Aspergillus and Candida

Object To analyze the growth characteristics of the clinical isolates of Fusarium, Aspergillus and Candida compared to standard strains in vitro.

Methods Comparing with the standard strains, 2 Fusarium clinical isolates, 2 Aspergillus clinical isolates and 2 Candida clinical isolates were selected and inoculated in different nutrient media, including solid media and liquid media. On the solid media we observed the colony morphology, while in the liquid media the optical density (OD) was recorded to generate growth curves for each fungus and medium. The filamentous fungi, including clinical isolates and standard strains, were inoculated in sabourauds agar medium (SDA), yeast extract medium (YG) and potato dextrose agar medium (PDA). Candida, including clinical isolates and standard strain, were inoculated in SDA medium and yeast extract peptone dextrose medium (YPD).

Results The growth characteristics of clinical isolates were different from the standard strain of same species in the same medium. On the solid media, the color of Fusarium clinical isolates colonies was darker than the standard strain. The diameter and density of the Aspergillus clinical colonies was greater than the standard one, so was the diameter of conidiation zone. The colony of Candida tropicalis clinical isolate was bigger than the standard strain, but as for Candida albicans, the clinical isolate was similar to the standard one. In liquid media, the growth curves of clinical isolates were similar to the standard ones in nutritious media, while in the simple composition media (SDA) the differences were obvious. YG medium was the most suitable for Fusarium, PDA most suitable for Aspergillus and YPD most suitable for Candida.

Conclusions Compared with standard stains, the clinical isolates had higher adaptive capacity to poorer nutrition condition. In the simple composition medium, the differences between clinical isolates and standard strains would be obvious.

 

Study of the Effect of Nutrient Environment on the Biological Characteristics of Fungal Corneal Clinical Isolates

Object The biological characteristics of fungal corneal clinical isolate growing in different nutrition conditions in vitro were studied in order to find out the key point of pathogenicity.

Methods Five kinds of media with different glucose and peptone concentrations were prepared as the liquid and solid form. The clinical isolates were as followed, 2 Fusarium solani strains, 1 Aspergillus fumigatus strain, 1 Candida albicans strain and 1 Candida tropicalis strain. Clinical corneal isolates and the standard strains were inoculated in the solid and liquid medium. They were all incubated at 29℃ for 96h and observed at defined time points. The optical density was recorded to generate the growth curves in liquid media, while on the solid media, the colonies were observed morphologically.

Results The clinical isolates of Fusarium solani and Aspregillus fumigatus showed stronger reproductive capacity in the abominable nutritional condition. But for the Candida albicans and Candida tropicalis, both standard strains and clinical isolates could sense the changes of the environment sensitively. What’s more, when the glucose concentration in the medium was similar to the aqueous glucose concentration in diabetic patients, the clinical isolates would show the biological features of quicker growth rate and stronger reproductive capacity.

Conclusions Nitrogen source is a very important nutrient element for fungus growth. In the different nutrient condition the clinical isolates showed stronger environmental adaptability and could sense the changes of the environment more sensitively.

论文目录:
第一章 文献综述 1
1.1 眼部主要病原真菌的种类 1
1.1.1 主要病原真菌的分类 1
1.1.2 眼部常见病原真菌的分类 2
1.2 眼部主要病原真菌的地域分布 3
1.3 眼部真菌感染的常见病原菌生物学特点 3
1.3.1 镰刀菌 3
1.3.2 曲霉菌 6
1.3.3 念珠菌 9
第二章 角膜常见致病真菌感染的临床特点 13
2.1 材料与方法 13
2.1.1 材料 13
2.1.2 方法 14
2.1.3 统计学处理 17
2.2 结果 17
2.2.1 患者一般情况 17
2.2.3 临床诊断方法比较 19
2.2.4 致病菌属及不同菌属真菌性角膜炎病变特点 19
2.2.5 特征菌株临床资料总结 21
2.3 讨论 28
2.4 小结 30
第三章 三种角膜致病真菌体外生长特性初探 31
3.1 材料和方法 31
3.1.1 材料 31
3.1.2 方法 33
3.1.3 统计学处理 42
3.2 结果 42
3.2.1 镰刀菌 42
3.2.2 曲霉菌 48
3.2.3 酵母菌 52
3.3 讨论 58
3.3.1 镰刀菌 59
3.3.2 曲霉菌 60
3.3.3 酵母菌 61
3.4 小结 62
第四章 体外培养营养环境对角膜致病真菌影响的研究 63
4.1 材料和方法 63
4.1.1 材料 63
4.1.2 方法 65
4.1.3 统计学处理 72
4.2 结果 72
4.2.1 镰刀菌 72
4.2.2 曲霉菌 80
4.2.3 酵母菌 86
4.3 讨论 93
4.3.1 氮源对眼部分离真菌生长的影响 93
4.3.2 葡萄糖对眼部分离真菌生长的影响 94
4.4 小结 96
第五章 结论及展望 97
参考文献 99
致谢 105
北京大学学位论文原创性声明和使用授权说明 107
个人简历、在学期间发表的学术论文与研究成果 108
参考文献:

[1] Garg P. Fungal, Mycobacterial, and Nocardia infections and the eye: an update. Eye (2012) 26: 245–251.

[2] Thomas PA, Kaliamurthy J. Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect. 2013 Mar;19(3):210-20.

[3] Sun XG, Zhang Y, et al. Etiological analysis on ocular fungal infection in the period of 1989 - 2000. Chin Med J (Engl). 2004 Apr;117(4):598-600.

[4] S?owik M, Biernat MM et al. Mycotic Infections of the Eye. Adv Clin Exp Med. 2015 Nov-Dec;24(6):1113-7.

[5] Thomas PA. Current perspectives on ophthalmic mycoses. Clin Microbiol Rev 2003; 16: 730–797.

[6] Kalkanci A, Ozdek S. Ocular fungal infections. Curr Eye Res 2011; 36: 179–189.

[7] Mukherjee B, Raichura ND, et al. Fungal infections of the orbit. Indian J Ophthalmol. 2016 May;64(5):337-45.

[8] Chakrabarti A, Shivaprakash MR et al. Fungal endophthalmitis: fourteen years’ experience from a center in India. Retina 2008; 28: 1400–1407.

[9] 孙士营, 刘梦阳等. 眼部真菌感染菌种分布特征. 中国真菌学杂志, 2007;2(6):324-328.

[10] 缪承杜, 洪葵. 真菌分类技术的研究进展. 安徽农业科学, 2007,35(22):6695—6697,6700.

[11] 徐德强, 肖义平. 真菌的分类与命名. 中国真菌学杂志, 2007,1(1):54-56.

[12] 王璞, 罗永艾. 深部真菌感染的主要病原菌生物学特性. 中国实用内科杂志, 2003;23(6):329-331.

[13] Liesegang TJ. Fungal keratitis. In: Kaufman HE, Barron BA, McDonald MB, eds. The cornea. Boston: Butterworth-Heinemann, 1998:219-241.

[14] Nath R, Baruah S, Saikia L, Devi B, Borthakur AK, Mahanta J. Mycotic corneal ulcers in upper Assam. Indian J Ophthalmol 2011; 59: 367–371.

[15] Gopinathan U, Sharma S, Garg P, Rao GN. Review of epidemiological features, microbiological diagnosis and treatment outcome of microbial keratitis: experience of over a decade. Indian J Ophthalmol 2009; 57:273–279.

[16] Leck AK, Thomas PA, Hagan M et al. Aetiology of suppurative corneal ulcers in Ghana and south India, and epidemiology of fungal keratitis. BrJ Ophthalmol 2002; 86: 1211–1215.

[17] Sun RL, Jones DB, Wilhelmus KR. Clinical characteristics and outcome of Candida keratitis. Am J Ophthalmol 2007; 143: 1043–1045.

[18] Thomas P. Tropical ophthalmomycoses. In: Seal D, Pleyer U, eds, Ocular infection. 2nd edn. New York: Informa Healthcare, 2007: 271–305.

[19]谢立信. 真菌性角膜炎. 中华眼科杂志,2003,39:638-640.

[20] Jurkunas U, Behlau I, Colby K. Fungal keratitis: changing pathogens and risk factors. Cornea, 2009, 28(6): 638- 643.

[21] Iver SA, Tuli SS, Wagoner RC. Fungal keratitis: emerging trends and treatment outcomes. Eye Contact lens , 2006, 32(6): 267- 271.

[22] Ritterband DC, Seedor JA, Shah MK, et al. Fungal keratitis at the New York eye and ear infirmary. Cornea, 2006, 25(3): 264-267.

[23] Bharathi MJ, Ramakrishnan R, Meenakshi R, et al. Microbial keratitis in South India: influence of risk factors, climate, and geographical variation. Ophthalmic Epidemiol, 2007, 14(2): 61-69.

[24] 孙旭光, 王智群, 罗时运等. 眼部真菌感染的病原学分析. 中华眼科杂志, 2002, 38(7): 405-407.

[25] 吴伟, 何梅凤等. 广州地区某眼科医院2004—2008年眼部真菌感染病原学分析. 中山大学学报, 2010, 31(6) : 852-855,861.

[26] 孙士营, 赵格等. 真菌性眼内炎常见病因及致病菌种分析. 中华眼科杂志, 2014, 50: 808-813.

[27] 吴绍熙主编. 现代医学真菌检验手册. 北京:中国医科大学,中国协和医科大学联合出版社,1998,216-276.

[28] 张丽君, 周文明, 姚润莲. 眼真菌感染研究近况. 中国真菌性杂志, 2014, 5(4): 241-246.

[29] 林镇跃, 阙友雄等. 植物致病镰刀菌的研究进展. 中国糖科,2014(1): 58-64,78.

[30] 刘敬, 谢立信, 史伟云. 主要致病真菌在角膜内生长方式的研究. 眼科研究, 2008, 26(1): 26-29.

[31] 张波. 常见致病真菌在角膜内生长方式的实验研究. 硕士学位论文

[32] 张伟宏. 真菌感染小鼠角膜过程中菌丝和主要炎症细胞动态变化的研究. 博士学位论文

[33] 白海青, 金梅铃, 赵桂秋等. 镰刀菌和曲霉菌性角膜溃疡的组织病理学特点. 中华眼科杂志, 2004, 40(5): 341-343.

[34] Thomas PA, Garrison RG, Jansen T. Intrahyphal hyphae in corneal tissue from a case of keratitis due to lasiodiplodia theobromae. J Met Vet Mycol, 1991,29: 263-267.

[35] Kiryu H, Yoshida S, Suenaga Y, et al. Invasion and survival of fusarium solani in the dexamethasone-treated cornea of rabbits. J Med Vet Mycol, 1991, 29: 395-406.

[36] 夏元, 薛春燕, 吴艳, 黄振平. 常见致病真菌所致角膜炎的激光共焦显微镜图像特点分析. 中华实验眼科杂志,2016, 34(2):155-159.

[37] 王勇, 杨秀荣, 杨依军, 孙凤芝. 茄根腐病致病病原——茄病镰刀菌及其蓝色变种的生物学特性研究. 天津农学院学报, 2002, 9(2):21-25

[38] 李伶俐, 韩正敏, 吕明亮, 应国华. 杨树枯萎病菌茄类镰刀菌的生物学特性. 林业科技开发,2009,23(4):51-54.

[39] 王艳玲, 张紊玮, 杨麦娟等. 两种马铃薯干腐病镰刀菌的生物学特征.中国食品工业, 2016,(3):59-61.

[40] 杨静美, 陈健, 罗金棠等. 番木瓜茄病镰刀菌的生物学特性研究. 中国热带农业. 2011(1):56-58.

[41] 赖传雅, 赖传碧, 曾凡凯等.茶扦插茵根腐性苗枯病菌腐皮镰孢生物学特性研究.植物病理学报.2002,32(1):79-83.

[42] 史俊艳, 徐英春. 镰刀菌感染的流行病学及其诊治进展. 中国真菌学杂志, 2009, 4(2):124-127

[43] Sewram V, Mshicileli N, Shephard GS, et a1. Production of Fumonisin B and C analogues by several Fusarium species. J Ag Food Chem, 2005,53(12):4861-4866.

[44] Pestka JJ, Smolinski AT. Deoxynivalenol: toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev, 2005,8(1):39-69.

[45] Gopinathan U, Ramakrishna T, Willcox M, et al. Enzymatic, clinical and histologic evaluation of corneal tissue in experimental fungal keratitis in rabbits. Exp Eye Res, 2001, 72: 433-442.

[46] Naiker S, Odhav B. Mycotic keratitis: profile of Fusarium species and their mycotoxins. Mycoses. 2004 Feb;47(1-2):50-6.

[47] Margolis TP, Whitcher JP. Fusarium: a new culprit in the contact lens case. JAMA 2006; 296: 985–987.

[48] Retuerto MA, Szczotka-Flynn L, He D, et al. Efficacy of care solutions against contact lens-associated Fusarium biofilms. Optom Vis Sci, 2012, 89:382-391.

[49] 鹿秀海, 高彦等. 真菌性角膜炎334例的病原学分析. 中华眼科杂志, 2003, 49(1): 12-15.

[50] Ghose S, Mahajan VM. Fungal flora in congenital dacryocystitis. Indian J Ophthalmol 1990, 38, 189–190.

[51] De Gannes V, Eudoxie G, Hickey WJ. Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety. Front Microbiol. 2013 Jun 13;4:164.

[52] Anastasi A1, Varese GC, Marchisio VF. Isolation and identification of fungal communities in compost and vermicompost. Mycologia. 2005 Jan-Feb;97(1):33-44.

[53] Jensen, H.L. The Fungus Flora of the soil. Soil Science, 1931,31(2):123-158.

[54] Ryckeboer J, Mergaen J, Coosemans J, et a1.Microbiological aspects of biowaste during composting in a monitored compost bin[J].J Appl Microbiol,2003,94(1):127-137.

[55] Nierman, What the Aspergillus genomes have told us. Medical mycology, 2005,43(1):3-5.

[56] 张晋卿, 刘伟等. 烟曲霉在不同温度和营养条件下的生长特性初探. 中国真菌学杂志, 2013,8(1):6-9.

[57] Wasylnka, J.A., M.I. Simmer, M.M. Moore. Differences in sialic acid density in pathogenic and non-pathogenic Aspergillus species. Microbiology, 2001, 147(4):869-877.

[58] Brakhage, A.A. K.Langfelder. Menacing mold: the molecular biology of Aspergillus fumigatus. Annual Review of Microbiology, 2002,56(3):433-455.

[59] Sugui, J.A.. Genes differentially expressed in conidia and hyphae of Aspergillus fumigatus upon exposure to human neutrophils. Plos One, 2008.3(7): e2655.

[60] Sugui, J.A. Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryotic Cell,2007.6(9):p. 1562.1 569

[61] San-blas G, Travassos LR, Fries BC, et al. Fungal morphogenesis and virulence. Med Mycol , 2000, 38( Suppl I ) :79—86.

[62] Gharmoum MA. Potential role of phospholipase in virulence and fungal pathogenesis. Clin Microbiol Rev, 2000,13: 122—143.

[63] Iadarola P, Lungarella G, Martorana PA, et al. Lung injury and degradation of extracellular matrix components by Aspergious fumigatus serine proteinase. Exp Lung Res, 1998,24: 233-251.

[64] Zhu WS, Wojdyla K, Donlon K, el al. Extracellular proteases of Aspergillus flavus. Fungal keratitis, proteases, and pathogenesis. Diagn Microbiol Infect Dia, 1990, 13:491-497.

[65] Hiroki Tanaka , Kyoko Ishida, et al. Study of ocular candidiasis during nine-year period. J Infect Chemother 22 (2016) 149-156.

[66] Sudbery P, Gow N, Benrman J. The distinct morphogenic states of Candida albicans. Trends in microbiology, 2004(12):317-324.

[67] De Bernardis, F., et al, The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun, 1998, 66(7):3317-3325.

[68] Buffo J, Herman MA, Soll DR. Acharacterization of pH-regulated dimorphism in Candida albicans. Mycopathologia, 1984(85):21-30.

[69] Brown DH, Jr., Giusani AD, Chen X, Kumamoto CA. Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Molecular microbiology, 1999(34):651-662.

[70] Gozalbo D, Gil-Navarro I, Azorin I, et al. The cell wall-associated glyceraldehydes -3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun. 1998, 66:2052—2059.

[71] Mayer FT., Wilson D, Hube B. Candida albicans pathogenicity mechanisms[J]. Virulence, 2013,4:119-128.

[72] Rao NA, Riggio DW, Delmage JM, et al. Adherence of Candida to corneal surface. Curr Eye Res, 1984, 4:851-856.

[73] Ibrahim As, Mirbod F, Filler SG, et al. Evidence implicating phospholipase as a irulence factor of Candida albicans. Infect Immun, 1999, 63: 1993-1998.

[74] Leidich SD, Ibrahim AS, Fu Y, et al. Cloning and disruption of caPLBI, a phospholipase B gene involved in the pathogenicity of Candida albicans. J Biol Chem, 1998, 273: 26078-26086.

[75] 江文俊, 姜福全, 崔彦. 白色念珠菌生物学特性研究进展. 基础医学与临床, 2014, 34(4):550-554.

[76] Lo, H.J., et al. Nonfilamentous C. albicans mutants are avirulent. Cell, 1997,90(5): 939-949.

[77] 曾庆延,董晓光,史伟云,谢立信. 真菌孢子黏附和基质金属蛋白酶在角膜真菌感染中的作用. 中华眼科杂志, 2004,11: 774-776.

[78] Maharana PK, Sharma N, Nagpal R, Jhanji V, Das S, Vajpayee RB. Recent advances in diagnosis and management of Mycotic Keratitis. Indian J Ophthalmol 2016;64:346-57.

[79] Karthikeyan RS, Leal SM Jr., Prajna NV, Dharmalingam K, Geiser DM, Pearlman E, et al. Expression of innate and adaptive immune mediators in human corneal tissue infected with Aspergillus or Fusarium. J Infect Dis 2011;204:942‐50.

[80] 曾庆延. 人真菌性角膜炎的酶学病理学基础及治疗的临床研究. 博士学位论文

[81] Meletiadis J, Meis JF, Mouton JW, et al. Analysis of growth characteristics of filamentous fungi in different nutrient media. J Clin Microbiol. 2001 Feb;39(2):478-84.

[82] 朱红梅,徐红,温海. 医学真菌常用培养基的制备和应用. 中国真菌学杂志, 2010,5(5):296-306.

[83] Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother. 2006;50:3519–28.

[84] Kaewmalakul J, Nosanchuk JD, Vanittanakom N, Youngchim S. Melanization and morphological effects on antifungal susceptibility of Penicillium marneffei. Antonie Van Leeuwenhoek. 2014;106:1011–20.

[85] Chiewchanvit S, Chongkae S, Mahanupab P, Nosanchuk JD, Pornsuwan S, Vanittanakom N, Youngchim S. Melanization of Fusarium keratoplasticum (F. solani Species Complex) During Disseminated Fusariosis in a Patient with Acute Leukemia. Mycopathologia. 2017 Oct;182(9-10):879-885.

[86] 周阳,李青,高阳. 糖尿病与侵袭性真菌感染的研究进展. 临床肺科杂志, 2008,13:876-878.

[87] 黄晓明,赵桂秋,林静等. 糖尿病真菌性角膜炎患者临床特征、病原学特点及预后的回顾性分析. 中华实验眼科杂志, 2014,32(7):621-626

[88] 黎明明,丘亮辉,赖江峰等. 糖尿病对真菌性角膜炎患者感染程度及预后的影响. 眼科新进展, 2016,36(8):763-766.

[89] Davies PD, Duncan G, Pynsent PB, et al. Aqueous humour glucose concentration in cataract patients and its effect on the lens. Exp Eye Res. 1984 Nov;39(5):605-9.

[90] Thewes S, Moran GP, Magee BB, Schaller M, Sullivan DJ, Hube B. Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans. BMC Microbiol. 2008 Oct 24;8:187.

[91] Hori J, Vega JL, Masli S. Review of ocular immune privilege in the year 2010: modifying the immune privilege of the eye. Ocul Immunol Inflamm. 2010 Oct;18(5):325-33.

[92] Hazlett L, Suvas S, McClellan S, et al. Challenges of corneal infections. Expert Rev Ophthalmol. 2016;11(4):285-297.

[93] Zhao G, Xu Q, Lin J, et al. The role of Mincle in innate immune to fungal keratitis. J Infect Dev Ctries. 2017 Jan 30;11(1):89-97.

[94] Krishnan S, Manavathu EK, Chandrasekar PH. A comparative study of fungicidal activities of voriconazole and amphotericin B against hyphae of Aspergillus fumigatus. J Antimicrob Chemother. 2005 Jun;55(6):914-20.

[95] Annick Ries LN, Beattie S, Cramer RA, Goldman GH. Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Mol Microbiol, 2017 Dec 2. (Accepted Article)

[96] Ramachandra, S., Linde, J., Brock, M., Guthke, R., Hube, B., and Brunke, S. (2014) Regulatory networks controlling nitrogen sensing and uptake in Candida albicans. PLoS One 9: e92734.

[97] Willger SD, Grahl N, Cramer RA Jr. Aspergillus fumigatus metabolism: clues to mechanisms of in vivo fungal growth and virulence. Med Mycol. 2009;47 Suppl 1:S72-9.

[98] Rolland, F., Winderickx, J., Thevelein, J.M., 2002. Glucose-sensing and -signalling mechanisms in yeast. FEMS Yeast Res. 2, 183–201.

[99] Ng TS, Desa MN, Sandai D, et al. Growth, biofilm formation, antifungal susceptibility and oxidative stress resistance of Candida glabrata are affected by different glucose concentrations. Infect Genet Evol. 2016 Jun;40:331-8.

[100] Bayry J, Aimanianda V, Guijarro JI, Sunde M, Latgé JP. Hydrophobins--unique fungal proteins. PLoS Pathog. 2012;8(5):e1002700.

[101] Desai JV, Mitchell AP, Andes DR. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb Perspect Med. 2014 Oct 1;4(10).

[102] Zhang X, Sun X. Characteristics of filamentous fungal biofilms and their roles in ophthalmology. Zhonghua Yan Ke Za Zhi. 2014 Sep;50(9):707-10.

分类号:

 R772.2    

馆藏位置:

 学位论文室(406)    

开放日期:

 2018-07-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式